International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:5, 2015

Event Monitoring Based On Web Services for
Heterogeneous Event Sources

Arne Koschel

Abstract—This article discusses event monitoring options for
heterogeneous event sources as they are given in nowadays
heterogeneous distributed information systems. It follows the central
assumption, that a fully generic event monitoring solution cannot
provide complete support for event monitoring; instead, event source
specific semantics such as certain event types or support for certain
event monitoring techniques have to be taken into account.

Following from this, the core result of the work presented here is
the extension of a configurable event monitoring (Web) service for a
variety of event sources. A service approach allows us to trade
genericity for the exploitation of source specific characteristics. It
thus delivers results for the areas of SOA, Web services, CEP and
EDA.

Keywords— Event monitoring, ECA, CEP, SOA, Web services.

[. INTRODUCTION

HE world is nowadays distributed and heterogeneous and

so are information systems that are often collections of
existing information sources. When integrating such a set of
existing information sources into a distributed information
systems’ architecture one has to deal with the technical (and
semantical) heterogeneity of such sources.

Such information systems are today frequently based on
Service-Oriented Architectures (SOA) [4], [6], [20]. SOA
based information systems in turn often have to process events
arising from different sources within them. Thus this is also
particularly applicable to distributed services such as event
monitoring, which are useful in the context of Event Driven
Architectures (EDA, [21]) and Complex Event Processing
(CEP [5], [21]). Web services standards [6] deal with this
heterogeneity to some degree at a technical level. However,
the only provide a little support for event processing (e.g. WS-
Notification [22]). In particular they usually do not directly
take the (technical and semantical) heterogeneity of event
sources themselves into account.

Technical integration of heterogeneous sources is today
reasonably supported by Enterprise Service Bus (ESB)
systems (e.g. Apache ServiceMix), JBoss ESB etc., which
usually support Web services [6]. However, Web services
provide general support only and do not or take only quite
limited source specific semantics into account. Not only does
this apply to WS-* standards such as WS-Notification or WS-
BPEL, but also to work on Complex Event Processing (CEP)
systems [5] such as Esper [2]. For this reason, our objective is

Arne Koschel is with the Faculty IV, Department for Computer Science,
University of Applied Sciences and Arts Hannover, Hannover Germany (e-
mail: arne.koschel@hs-hannover.de).

to enhance Web services by mechanisms that allow us to add
event source specific application semantics. Thus we provide
work in the area of Event Driven Architectures (EDA) [5]
combined with work for (Web) Service-Oriented
Architectures (SOA) [4].

Our key aim is to provide a particular flexibly configurable
event monitoring Web service, which accepts source
heterogeneity for a (Web) services environment. Flexibly
configurable means the ability to generate code templates at
compile time and to provide dynamic parameterization of
parts of the event monitoring Web service. Moreover, the
examination of options for several configuration options for
full Event—Condition—Action (ECA) rule processing, for
example options for parallel rule processing engines, are part
of our work.

To allow for precisely defined semantics, our event passing
follows as far as possible semantics, which were developed for
established EDA systems. In particular, we propose the
semantics from Active Database Management System
(ADBMS) style ECA rules [1]. Our monitoring (Web)
services extend earlier work on ECA rule based active
information delivery [13], [16], [18] in heterogeneous
information systems. This earlier work was limited in
flexibility as well as in performance and was developed for
CORBA [7] only. It details and extends work from [16] and
discusses even more event information sources.

The remainder of this article starts in the next section with a
discussion of related work. This is followed by the design and
concepts for our event monitoring services (Section III) and
followed implementation techniques (Section IV). Section V
draws a conclusion and looks at some future work.

II. RELATED WORK

Looking at work, which is related to the work presented
here, it is mainly found in the areas of (distributed) event
monitoring, Web services themselves, Active DBMSs,
distributed ECA rule processing, and workflow systems.

A. (Distributed) Event Monitoring

In (distributed) monitoring systems (see [10] and [11] for
overviews) event monitoring techniques are well understood.
Such systems can contribute general monitoring principles to
the work presented here. These systems mainly concentrate on
primitive (often pure) event sources, such as operating system
level signals. This is in contrast to the work here, which is
concerned with event sources that are typically found in
heterogeneous information systems.

1098

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:5, 2015

B. Active DBMS (ADBMS)

ADBMSs offer several elements for use in our work (see
[1] and [8] for overviews). Event monitoring techniques in
ADBMSs are partially useful, but concentrate mostly on
monitoring ADBMS internal events, and tend to neglect
external and heterogeneous event sources. For the design of
interfaces to our monitoring service, namely those for
notifiable and monitored objects, we follow similar design
patterns [3].

A major contribution of ADBMSs is their very well defined
and proven semantics for definition and execution of ECA
rules. This leads to general classifications for parameters and
options in ADBMS core functionality [1]. Building upon these
proven results, we capture options that are relevant to event
monitoring in our general event model, especially event type,
event binding and event processing semantics. However, since
ADBMSs mostly do not concentrate on heterogeneity (and
distribution), our work extends those done for ADBMSs and
CEP/EDA into these directions.

C.Distributed ECA Rule Processing

There are (few) systems, which combine the worlds of
monitoring and ECA rule processing together. Partially they
even take some heterogeneity and distribution from real life
information systems into account.

RIMM [9] focuses on reactive mechanisms for database
interoperability, but only describes a simple event and ECA
rule model with very limited semantics. In the ECA rules of
the NCL/NIIIP approach [12] only method event types are
supported. This takes no event source specifics into account.
The Amalgame project [15] and the WHIPS/TSIMMIS project
[14] use ECA rules to support data integration and view
materialization in a warehousing environment. To this end,
they only need simple ECA rules, which monitor a single
source and update derived information. Some of the primitive
event monitoring techniques of WHIPS/TSIMMIS seem to
meet our needs. Both Amalgame and TSIMMIS take some
source specific semantics into account. However, they have
not been developed with any eye towards Web services.

D.Web Services

Nowadays Web services implementation platforms
themselves give a solid implementation basis to integrate
heterogeneous process and information sources in general.
The lack however, support for source specific event
monitoring. WS-* standards such as WS-Notification or WS-
BPEL and similar rule techniques are just relatively generic in
their approaches as mentioned above.

E. Web Services

Workflow/BPM systems are at a higher level than ours.
They could utilize our work for the event monitoring of
resources.

As a conclusion, what is missing in all the above
approaches is a monitoring service, which does accepts
heterogeneity and is designed for a Web services environment.
There is no approach, which combines configurable WSDL
based event type specification, monitoring interfaces, a

classification scheme and algorithms for monitoring
heterogeneous sources together with flexible dynamically
parameterized definition of event types. Moreover, there is
only a partially discussion on techniques and implementation
aspects. To overcome these deficiencies, the goal of our work
is to address this combination of aspects in flexibly
configurable event monitoring Web services.

III. CONCEPT: EVENT MONITORING (WEB) SERVICES

Our overall work addresses the following problems:

e Description (and detection) of arbitrary event types from
heterogeneous event sources.

e Proper utilization of source category specific
implementation support for the detection of events from
such sources.

e An in depth examination of the supportable degree for
parameters from Active DBMS style ECA rules such as
event occurrence notification time (after, before, instead)
or event—granularity (instance/set—oriented).

mnd@m
L)

[A ill

Atiﬁablcm

receive y

_evet deactivate |eve

WT apti

|
event_name_t |

event_instance_t

evenl_description_t

Sequence of
notifiable objects

Fig. 1 Monitored-Objects and Notifiable-Objects

The main results of the work presented here are as follows:

1) Development of a WSDL-based, configurable and
extensible event type model for arbitrary event sources.

2) Flexible event type descriptions using either direct coded
WSDL event types or WSDL as an event description
language, or a (simple) meta-model (name/value lists).

3) Provision of the WSDL specification of the service
interfaces, which each Monitored-Object in the system
has to be implemented. Fig. 1 illustrates the interplay of
Monitored-Objects and Notifiable-Objects.

4) Contribution and detailed explanation of a classification
scheme, which categorizes event sources by their specific
implementation support for monitoring (see Fig. 2).

5) Implementation techniques for monitoring event sources
from several categories are examined.

6) Compile time configurability of event monitors is
achieved by generation of monitoring technique specific
code templates.

7) Discussion of event semantics from ECA rule parameters
that each of the monitoring techniques is able to support.

To illustrate the work provided here, first our event source
classification scheme in Fig. 2 is described here.

1099

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:5, 2015

o DéliaAciviy

Trigger or ECA-TUes #— Call-bacis
Active Sources ntermal: Ackons & Data Stucts
Pure Event Sources

Even: Sources
(Suzpartfor Monicring) Call Driven'Hard Coded
- o Support"”‘
Passive Sources -— Cueries
Poling Support = Logs

Snagshots

Fig. 2 Classification: Monitoring Support

Heterogeneous information sources differ dramatically in
their functional capabilities. To study and provide various
encapsulation strategies for event detection in such sources,
we categorize the sources with regard to their support for
event detection. Clearly, the more support a source provides,
the simpler is the construction of a corresponding event
monitoring capsule, which wraps or encapsulates the event
source in the form of a Web service.

From left to right Fig. 2 starts in general with event sources.
With respect to their monitoring capabilities such sources
might be sub-classified into active and passive event sources.

Active Event Sources support at least some (active) event
detection or event notification mechanism.

o Pure Event Sources have no notion of triggers or similar
event detection mechanisms. They are purely able to
notify about their events, but there is no source specific
specialized detection mechanism.

e Trigger/ECA-Rules Sources have (at least) some
mechanism to specify which events shall be detected (and
possibly how and when). They might be further sub-
divided as follows:

— Call-back Sources are the most versatile since they have a
notion of event that has some external effect. Typically,
they allow an interested party outside the source to
register for an event and then go to sleep, only to be
woken up by a call from the source after it detected one of
the party's events. Examples are DBMSs with trigger
mechanisms which allow as part of the associated action a
call to the outside.

— Internal Action Sources resemble call-back sources
insofar as they are still capable of detecting events.
However, the events are entirely internal so that possible
reactions remain hidden to the outside and just manipulate
their own database. In order to qualify as an event source
these systems must provide explicit means to make the
events visible, e.g., by storing the events, or the entire
trigger instance, in an internal data structure, which might
be queried from outside the source.

— Delta Activity Sources have the ability to periodically
send deltas of the net effect of updates since the previous
transmission.

Passive Event Sources: All sources that provide no insight
whatsoever into their inner dynamics are termed passive
sources. Still mechanisms for event detection can be
developed.

e No Support: There are sources, which provide no support
for event detection at all by themselves. However, still a

capsule or wrapper might be developed to access such
sources as services. Whenever then a service call to such a
source happens, this call could be detected as a service
call event at the level of the event source capsule.

e Polling Support: Several sources have mechanisms,
which allow to poll them for new information, for
example, by examining a sources’ log entry information.
They can be further divided as follows:

— Queryable Sources are data sources which support a
query interface. Interesting data items can periodically be
polled (queried) and compared in order to detect state
changes.

— Protocolled Sources record their actions in log files which
can be analyzed to detect events. Examples are mail
systems or the log files available with all DBMSs.

— Snapshot Sources provide their data in bulk, i.e., without
any selective capabilities, thus comparisons must also be
done in bulk. Traditional files are a typical as an example.

IV. EVENT MONITORING TECHNIQUES

In [16] we discussed implementation concepts of three
types of event sources, in particular: “Event Sources with
Triggers and Callbacks”, “Event Sources with Internal
Triggers and Polling”, and “Protocolled Event Sources”. As a
particular complex example we slightly extend the discussion
of “Event Sources with Triggers and Callbacks” as an active
event source here. Moreover we discuss two additional types
of sources, namely “Queryable Sources” and ‘“Snapshot
Sources” below.

A. Event Sources w. Triggers and Callbacks

Let us suppose an event source, which supports triggers and
callbacks (here an Oracle relational DBMS, see Fig. 3). Oracle
allows the communication with Oracle sessions using so
called pipes. A pipe is a data structure, into which messages
may be placed and from where they may be retrieved in FIFO
order. For retrieval, a recipient process registers with the pipe.
The recipient then reads one message from the pipe, processes
it, and reads the next message. If the pipe is empty, the
recipient will block. It becomes unblocked, after a new
message has been placed in the pipe. Note that a message in a
pipe becomes immediately visible independently of the status
of the transaction that placed it there.

Now suppose that an event type is defined for the source,
say update of a tuple in some relation. The wrapper declares a
corresponding trigger which, when fired, places a message
with all relevant information into the pipe. The wrapper thread
then acts as the recipient, and hands the event — with
negligible overhead — over to an appropriate receiver service
(the Notifiable-Object from above).

The callback mechanism has the advantage of event
detection without delay and incurs negligible overhead
because no query processing is needed as in the other
mechanisms discussed below. An issue however, is the lack of
standardization for the callback mechanism and, thus, its
limited availability.

1100

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:5, 2015

Oracle /\
| table 1 =
[[monitoring-system
/"F’—— i
A | vy
~ _\ @ receive message from pipe
. pipe :
Message 2 Message 1 ||
Trigger T
>

Fig. 3 Monitoring: Triggers and Callbacks

B. Queryable Passive Sources

Now let us have a look at passive information respectively
“event” sources. A passive source does not have a notion of
events and, thus, does not offer triggers or similar event
detection mechanisms by itself. An event monitor for such a
source must now somehow simulate the effects of triggers.

We will assume for this case, that we have a source that at
least supports some kind of queries (see our classification
scheme from above). Such a source could be a DBMS, which
does not support triggers, but at least queries, e.g. smaller
relational DBMS without triggers or other kinds of DBMS, for
example NoSQL DBMS [19] without triggers.

The simulation to monitor such sources for events consists
in polling (in the relational DBMS case) the table of interest
and comparing its current state with some earlier state in order
to detect changes that can be related to a defined event.

In a relational DBMS polling can again be based on SQL
queries. Likewise NoSQL DBMSs’ generally provide some
query mechanism as well, which could be utilized here.

Given a defined event type, a suitable query must be
constructed. The only event types possible are those that
reflect — in the RDBMS case — tuple insertions, deletions or
updates or likewise CUD operations in NoSQL DBMSs’. The
query is invoked at each poll and its result compared with the
result of an earlier query. The comparisons are based on keys
(or identifying ids in the general case). For example, an
INSERT event is recognized if tuples are detected with keys
that did not exist in the database at the prior poll. A DELETE
event is recognized if a key has disappeared between
successive polls. An UPDATE event occurred if tuples exist
with identical keys but different values in the remainder.

Unfortunately this solution causes much more time
overhead — compared to most active sources. This is due to the
much larger relations that must now be examined.
Consequently, it does not seem to scale well either in database
size or number of data sources. However, it is still better than
not being able to monitor such sources at all.

Also, events may now be lost, since polling only observes
the net effect of events that occurred during a polling interval.
For example, an update may be the result of either an update
event or a deletion event followed by an insertion event. An
insertion event followed by a deletion event on the same tuple
may not leave any trace. The choice of polling interval needs

particular care and will depend on the application’s time
constants and tolerance for losses.

— Query O__) Monitor

detects events
by state
comparisons

— ~__ retums _—
new state

Fig. 4 Monitoring: Queryable passive sources

C.Passive Snapshot Sources

Encapsulation of passive snapshot sources follows similar
concepts to the encapsulation of queryable passive sources (cf.
Fig. 5). However, this time not even a discriminatory querying
facility is provided, so that a structure such as a file must be
inspected and compared to an older state in bulk.

Consequently, event detection in such sources involves a
quite significant time overhead that limits scalability. A
typical technical implementation example would be the
periodic poll of a file with a state A, that is compared to a later
state B of the file. Technical, for example, utilizing the diff
utility is a possible option here. Again, as with the UPDATE
case in queryable passive sources, events might get lost.
However, frequently bulk comparisons are just “the option” to
detect events in such types of sources at all.

Monitor
file | periodic file load event detection
using file
/"“‘x / comparison
- l
file copying
file copy
/'_"“‘--.

Fig. 5 Monitoring: Passive Snapshot Sources

V.CONCLUSION

This article presented the conceptual design for event
monitoring Web services for particular heterogeneous event
sources. It extends and refines earlier work in this area [13],
[16], [18] by incorporating the concept of Monitored-Objects
and Notifiable-Objects. Moreover, it explains and details the
classification scheme for heterogeneous event sources and
examined additional implementation concepts for further
event sources.

In our current and future work we are exploring, how the
developed concepts might be transferred and implemented
within nowadays cloud computing environments [17]. Cloud
computing environments are heterogeneous almost “by
nature” and seem to be as such a good extension space for the
presented work.

ACKNOWLEDGMENT

Acknowledgment goes to the co-workers and students from

1101

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:5, 2015

HS Hannover, which helped to implement the event
monitoring services in our research work. Also the author
wants to acknowledge the work of my colleagues and
cooperation partners in previous publications around this
topic.

REFERENCES

[1] ACT-NET Consortium. The Active DBMS Manifesto. ACM SIGMOD
Record, 25(3), 1996.

[2] ACT-NET Consortium. The Active DBMS Manifesto. ACM SIGMOD
Record, 25(3), 1996.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley Publishing Company, 1995.

[4] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented
Architecture Best Practices. Prentice Hall, 2005.

[5] D. Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley
Longman, 2002.

[6] E. Newcomer and G. Lomow. Understanding SOA with Web Services.
Addison-Wesley, 2004.

[7] Object Management Group. CORBA Home Page. Technical Report,
Object Management Group, Inc. (OMG). Available:
http://www.corba.org/

[8] N. W. Paton, editor. Active Rules for Databases. Springer, New York,
1999.

[97 M. Young. The Technical Writers Handbook. Mill Valley, CA:
University Science, 1989.

[10] B. Schroeder. On-Line Monitoring: A Tutorial. IEEE Computer,
28(6):72-80, June 1995.

[11] S. Schwiderski. Monitoring the Behavior of Distributed Systems. PhD
thesis, Selwyn College, University of Cambridge, University of
Cambridge, Computer Lab, Cambridge, United Kingdom, 1996.

[12] S. Su, H. Lam, T. Yu, S. Lee, and J. Arroyo. On Bridging and Extending
OMG/IDL and STEP/EXPRESS for Achieving Information Sharing and
System Interoperability. In Proc. 5th Annual Express User Group Int.
Conf. (EUG), Grenoble, France, October 1995.

[13] G. v. Bultzingsloewen, A. Koschel, and R. Kramer. Active Information
Delivery in a CORBA-based Distributed IS. K. Aberer and A. Helal,
editors, In 1st IFCIS CooplS. IEEE CS Press, 1996.

[14] J.Widom. Research Problems in Data Warehousing. In Proc. 4th Int.
Conf. Information and Knowledge Management (CIKM), November
1995.

[15] G. Zhou, R. Hull, R. King, and J. Franchitti. Supporting Data Integration
and Warehousing Using H20. Data Engineering, 18(2):29-40, June
1995.

[16] A. Koschel, I. Astrova. Event Monitoring Web Services for
Heterogeneous Information Systems. World Academy of Science,
Engineering and Technology (WASET), Vol:19 2008-07-27, 50-52,
2008.

[17] M. Armbrust et al. Above the Clouds: A Berkeley View of Cloud
Computing. Technical report, EECS Department, University of
California, Berkeley, 2009.

[18] A. Koschel, R. Kramer. Configurable Event Triggered Services for
CORBA-based Systems. Proc. 2nd Intl. Enterprise Distributed Object
Computing Workshop (EDOC98), San Diego, California, U.S.A,
November 1998.

[19] P. Sadalage, M. Fowler: NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Pearson, 2013.

[20] T. Erl: Service-Oriented Architecture: Concepts, Technology, and
Design, 5th edt., Prentice Hall, NJ, 2005.

[21] R. Bruns, J. Dunkel: Event-Driven Architecture: Softwarearchitektur fiir
ereignisgesteuerte Geschaftsprozesse, Springer, 2010.

[22] OASIS Open: Web Services Base Notification 1.3, OASIS Standard,
Oct. 2006.

1102

