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Abstract—Load Forecasting plays a key role in making today's
and future's Smart Energy Grids sustainable and reliable. Accurate
power consumption prediction allows utilities to organize in advance
their resources or to execute Demand Response strategies more
effectively, which enables several features such as higher
sustainability, better quality of service, and affordable electricity
tariffs. It is easy yet effective to apply Load Forecasting at larger
geographic scale, i.e. Smart Micro Grids, wherein the lower available
grid flexibility makes accurate prediction more critical in Demand
Response applications. This paper analyses the application of
short-term load forecasting in a concrete scenario, proposed within the
EU-funded GreenCom project, which collect load data from single
loads and households belonging to a Smart Micro Grid. Three
short-term load forecasting techniques, i.e. linear regression, artificial
neural networks, and radial basis function network, are considered,
compared, and evaluated through absolute forecast errors and training
time. The influence of weather conditions in Load Forecasting is also
evaluated. A new definition of Gain is introduced in this paper, which
innovatively serves as an indicator of short-term prediction
capabilities of time spam consistency. Two models, 24- and
1-hour-ahead forecasting, are built to comprehensively compare these
three techniques.

Keywords—sShort-term load forecasting, smart micro grid, linear
regression, artificial neural networks, radial basis function network,
Gain.

I. INTRODUCTION

OAD Forecasting (LF) is becoming a key feature for the

electricity distribution industry in the Smart Grid age. In a
scenario where electricity prices change dynamically and
Renewable Energy Sources (RES) put the stability of the grid at
stake, LF is an essential tool for energy utilities to organize
operations and to support the planning of investments on
electric power generation, infrastructure development and
financial purchasing. LF is even more valuable in scenarios
where Demand Response (DR) techniques are applied. LF tools
can in fact enable the devices or customers to learn their
operating decisions based on the load prediction for next hours
or days, thus enhancing the DR mechanisms ability to shift
reliably energy usage and shave load profiles. Short-term load
forecasting (STLF) is based on statistical procedures which use
past load and exogenous variables such as weather related
variables to forecast one hour up to one day energy
consumption. A large variety of statistical and artificial
intelligence techniques have been developed for STLF, for
instance, regression methods [1], [2], neural networks [3]-[6],
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radial basis function network [7]-[10], expert systems
[11]-[14], and fuzzy logic [11], etc. Progress in LF can be
achieved by providing STLF with probability distributions and
the further direction should be artificial intelligence techniques
with better understanding of the load dynamics and proper
models [15], [16].

LF techniques can be applied by aggregating data at different
spatial scales, which are e.g. single or few energy-consuming
components or devices [17], all loads within a household, a
building [18], [19], or the entire sections of the grid [20]. Due to
this multi-scale applicability they are especially useful in
multi-scale energy systems such as the one proposed by the
GreenCom project [21], [25]. According to the GreenCom
concept, currently being deployed in a real small-size pilot with
actual users, loads information collected from single loads and
households can be progressively combined, forecasted, and
possibly controlled at different scales to pave the way towards
(Virtual) Smart Micro Grids, which can aggregate loads,
storage as well as generation capacity and act as a single
cooperating entity towards the remaining of the Smart Grid.

The purpose of this paper is to analyze and evaluate load
forecasting in such a concrete scenario comparing three
different STLF techniques and the influence of weather
conditions on forecasting process. The considered techniques
are firstly introduced in Section II. Then programming
methodologies including data preparation and forecast models
are presented in Section III. Section IV describes the evaluation
of those abovementioned three techniques and compares the
results while conclusions and future works are drawn in Section
V.

II. TECHNIQUES FOR SHORT-TERM LOAD FORECASTING

A. Linear Regression Method

Linear regression (LR) method is one of the most extensively
used techniques for STLF. It analyzes the relationship between
continuous dependent variables and one or more explanatory
variables and uses the technique of weighted least-squares
estimation to compute the regression coefficients according to
the amount of historical data. The following model is applied
for this analysis wherein t is the sampling time, y the total load,
v the vector of adapted variables such as time, temperature,
humidity, wind speed, etc., a vector of regression coefficients:

Vi=Vioy+ & (D

The coefficients in the forecast model are calculated from the
latest actual data prior to the forecasting day. Current
observations are more important for the forecasting due to the
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variability of load characteristics. The accuracy of forecast
using regression models depends on the precision with which
the regression function fits the data. Consequently, a
pre-analysis of the load is essential for LR if faithful result of
the analysis is expected.

B. Artificial Neural Networks

In the past two decades, there has been a great interest in the
field known as artificial intelligence (Al) as it offers powerful
and flexible methods for obtaining solutions to problems
eluding traditional methods. Artificial neural networks (ANNSs)
and expert system are two major branches of AI. ANNs have
been proven as a promising alternative to solve complex
problems [3], [4], [15].

A feed-forward ANN is a supervised network organized in
layers, which can have any number of layers, units per layer
(neurons), inputs and outputs. Each single neuron is connected
to other ones of the previous layer through adaptable weights.
The neuron receives information through a number of input
nodes, processes it internally where weights are adjusted so that
the network attempts to produce the desired output, and
eventually generates a response. Fig. 1 shows the architecture
of a typical multilayer feed-forward neural network.

For processing of ANNSs, the input values are linearly
combined in the first stage. Then in the second stage, the result
is applied as the argument of a nonlinear activation function
such as bounded sigmoid functions.

When the network starts to be trained, all the information is
supplied to it as a data set. After reading each pattern, the
network produces an output by using the input data and then
compares it with the training pattern. For any possible
difference, the weights are changed to abate the error
accordingly. The computation stops until all the errors are
under the desired tolerance. The mostly implemented training
algorithm is back-propagation (BP) which wuses a
steepest-descent technique based on the computation of the
gradient of the loss function, changing the weights along its
gradient, reducing the total error and improving the
performance of the neural networks.

To design an ANN, the first step is to select an appropriate
architecture, e.g. the multilayer perception (MLP) which is the
most popular neural network with multiple hidden layers.
Subsequently, the number of hidden layers, input nodes,
neurons per layer, and the type of activation function should be
determined.

C.Radial Basis Function Network

The radial basis function network (RBFN) is another kind of
feed-forward ANN which is simple yet auspicious thanks to the
utilization of extensional learning and high computing speed.
An RBFN consists of an input layer, a hidden layer, and a linear
output layer. The input layer determines the Euclidean distance
amongst the input vector and the weight vectors of the hidden
layer that is composed of units with Gaussian transfer function
(radial bases) whose weight vectors form a vectored
quantization of the input space. The output weights are linearly
combined while the hidden layer utilizes the nonlinear

transformation for feature extraction during the data
processing.

Fig. 2 illustrates its structure. The learning process can be
divided into two stages. First, the weights of the hidden layer
are calculated by clustering techniques or are randomly
assigned in the input space. Alternatively, an optimal method
can be employed such as orthogonal least squares algorithm.
Second, the weights of output layer are computed by linear
regression method. The main difference between MLP and
RBFN is the absence of hidden layer weights. The parameters
adjusted in the learning process are only the linear mapping
from hidden layer to output layer. So it is easier to interpret the
hidden layer than the ones in an MLP.

The RBFN requires more neurons than standard BP network
does, but it is optionally sub-dividable into parallel-training
fractions of time which is comparatively shorter than it takes to
train a BP network.

hidden layers

input layer output layer

Fig. 1 Architecture of multilayer feed-forward neural network

input units hidden layer (bases)

(distance measure)

linear output layer

Fig. 2 Structure of a radial basis function network

III. PROGRAMMING METHODOLOGIES

A. Data Preparation

As it has been argued that the quality of the input data to the
ANNs may strongly affect the results [22]-[24], data
preparation in ANNs modeling is a critical step, especially for
models with complex data analysis.

In the current work, the data were collected from single loads
and households of GreenCom project from 2014/1/1 to
2014/6/30 and were prepared to comprise six different
attributes,

1) L: peak load,
2) d: days of the week (Monday to Sunday),
3) h: hours of the day (0 to 24),
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4) f: a flag indicating whether it is a holiday (0 indicates
holiday and 1 indicates non holiday)

5) T:temperature,

6) H: humidity.

B. Forecasting Model and Error Analysis

A variety of papers is dependent solely on one model which
is 24-hour-ahead forecasting to investigate the techniques for
STLF [2], [4], [6]-[9], [11]. In order to more comprehensively
compare the three techniques employed in this paper, a
1-hour-ahead forecasting is included in addition to the 24-hour
one.

The 24-hour-ahead forecasting model is composed of all
load variables from each of the previous 24-hour load and other
five attributes described before and the model is like:

L()=FIL(t-24), L(t-25), ..., L(-48), h(t), d(¥), f. T.H] (2)

The 1-hour-ahead forecasting model is similar with
24-hour-ahead forecasting model instead the load variables are
from each of the previous one hour load:

LO=FIL(t-1), L(t-2), ..., L(t-24), h(v, d@), £. TH]  (3)

The forecasting error is measured by the Mean Absolute
Percentage Error (MAPE) since it is the industry standard
accepted for examining load forecasting performance. It is
explained in the equation below where y is the actual load, y*
estimated value, and N the number of observations,

MAPE % = %Zéil[abS()? = ¥)/y] % 100 )

C. Forecasting Model and Error Analysis

The current paper introduces a new definition of Gain, which
innovatively serves as an indicator of short-term predication
capabilities, as larger gain implies more similar MAPE values
for different forecasting time length (i.e. 1 hour and 24 hours)
and hence the forecasting technique is more consistent in terms
of time spam within the short-term range.

The Gain is defined as the ratio between the MAPEs of
N-hour-ahead forecasting (N< 24) and 24-hour-ahead
forecasting using the same technique,

Gain=[MAPE(N-hour-ahead)]/[MAPE(24-hour-ahead)](5)

In this paper, except 1-hour and 24-hour-ahead forecasting,
we also simulate forecasting with other time length (i.e. 2 hours,
6 hours, and 12 hours) to have a good grasp of the gain.

IV. RESULTS AND COMPARISON

A. I-Hour and 24-Hour-ahead Forecasting

For these two forecasting models, one month data (from
2014/05/01 to 2014/05/31) are acquired for training and the
loads information collected on June 9th are forecasted using all
three techniques.

For load forecasting, there are three vital quantities:

i.  the load shape which is measured by examining the error in

ii.

iil.

each hour of a day

the daily peak load which refers to the highest demand for
the day

daily energy which is the sum of all the hourly daily loads
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Fig. 3 Forecasting values of 24-hour-ahead loads by three techniques
on June 9th
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Fig. 4 Forecasting values of 1-hour-ahead loads by three techniques on
June 9th

All these three quantities are presented in the figures below.
Results are examined by plotting the actual loads and the
forecast values, e.g. Fig. 3 illustrates the results for
24-hour-ahead forecasting on June 9th wherein the solid line
represents the actual loads while the solid one with star the
forecast value by using LR, the dashed one with circle the
forecast value by MLP, and the dashed one with square the
forecast value by RBF. Fig. 4 shows the 1-hour-ahead
forecasting of the same day by three techniques.

For error analysis, MAPEs presented in Table I indicate that
RBFN improves prediction accuracy in comparison with other
two techniques. The main limit of LR method, which gives
unsatisfactory results as MAPE=21.87% for 1-hour-ahead
forecasting, and 32.55% for 24-hour-ahead forecasting, lies in
the linear combination of the time series while the collected
electric power signal has strong nonlinear behavior. Therefore
it is unavailing to use LR method to forecast such loads.
Instead, a nonlinear combination, as in MLP and RBF,
possesses higher flexibility, which attributes to the
improvement of results. Compared MLP with RBF, RBF has
the smaller MAPEs than MLP does for both two models. Since
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RBFN uses more hidden units than MLP does, it can be
concluded that the utilization of more hidden units can improve
the result.

TABLEI
MAPES(%) VALUES OF FORECASTING 1-HOUR AND 24-HOUR-AHEAD LOADS
BY THREE TECHNIQUES

Model LR MLP RBFN
1-hour 21.87 7.04 3.12
24-hour 32.55 19.34 7.92

In addition, another most important independent variable for
load forecasting is weather information, which includes
temperature, humidity, precipitation, wind speed, cloud cover,
etc; especially temperature and humidity will affect the load
prediction accuracy. In our models, temperature and humidity
are also taken into consideration as one of the input variables.
Fig. 5 shows the 1-hour-ahead forecasting values by using RBF
with and without temperature and humidity as input variables
wherein the solid line is the actual load, the dashed one the
forecast value without temperature and humidity, and the
dashed one with star the forecast value with those two
parameters. It is observed from Table II that by adding
temperature and humidity as input variables, the MAPE is
reduced from 3.93% to 3.12%, thus temperature and humidity
play a vital role in accurate load prediction.

140 T T T
Actual

—# —Forecast (with T&H)
120 "+ Forecast (without T&H) b

20
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Fig. 5 Comparison of 1-hour-ahead forecasting with and without
temperature and humidity by RBF on June 9th

TABLEII
MAPES(%) VALUES OF FORECASTING 1-HOUR-AHEAD LOADS BY RBF
with T and H without T and H
MAPE (%) 3.12 3.93

B. Training Time

In this work, we use BP as the training algorithm for MLP
while for RBF we use unsupervised training algorithm which is
kernel k-means clustering algorithm. Fig. 6 shows the
recognition errors during the training process for MLP and RBF,
which are plotted as a decreasing function of the number of
epochs. For the first 100 epochs, RBF achieves faster
convergence than MLP does. MLP with BP training algorithm
gets trapped into local minima so the error does not decrease
with further iteration and in this case we need to re-initialize the
optimization of parameters during the training process. On the

contrary, this disadvantage is absent in RBF networks.

The training time of 24- and 1-hour-ahead forecasting with
MLP and RBFN is compared in Table III, in which the time of
RBFN is about three times shorter than that of MLP, indicating
that RBFN is a more powerful forecasting technique when fast
learning is required.
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Fig. 6 NN errors as a function of the number of epochs during the
training process for MLP and RBF for 1-hour-ahead forecasting

TABLE III
TRAINING TIME(S) FOR MLP AND RBF TECHNIQUES
Model MLP RBFN
Training 24-hour 75 25
time (s) 1-hour 50 15
C.Gain

The current paper introduces the Gain served as an indicator
of short-term prediction capabilities, as larger gain implies
more similar MAPE values for different forecasting time
lengths (i.e. 1, 2, 6, 12, and 24 hours) and hence the forecasting
technique is more consistent in terms of time spam within the
short-term range.

On one hand, as shown in Fig. 7, LR has the largest gain
among three techniques and its gain increases smoothly.
Therefore LR is seemingly the most consistent technique for
forecasting. Nevertheless, LR controversially trains its own
linear combination algorithm using the previously mentioned
electric signal with strong nonlinearity, and consequently is
characterized by questionable prediction capabilities resulting
in the MAPE, albeit invariably significant in absolute value in
comparison with those of MLP and RBF, which can be
observed from Figs. 3 and. 4, insensitive to neither
N-hour-ahead forecasting is intended. Therefore, the Gain of
LR is ascribable to the consistent inaccuracy and is omitted
from the comparison specific to the training signals collected in
this work.

On the other hand, comparison between MLP and RBF,
forecasting techniques with more appropriate nonlinear
combination algorithms, shows that the Gain for RBF increases
first, then decreasing while forecasting 6-hour-ahead loads, and
finally increases again. For 1-hour and 2-hour-ahead
forecasting, RBF has the larger gain than MLP does, but
starting from 6-hour to 12-hour-ahead forecasting, it has the
smaller gain than MLP does. The Gain of MLP is increasing
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positively than the one of RBF.

TABLE IV
GAIN FOR N-HOUR-AHEAD FORECASTING BY USING THREE TECHNIQUES
N HOURS LR MLP RBF
1 0.67 0.36 0.39
2 0.91 0.48 0.77
6 0.94 0.73 0.43
12 0.97 0.95 0.8
24 1 1 1
1 ‘ . :
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Fig. 7 Absolute values of Gain for N-hour-ahead forecasting of
three techniques

D.Comparison and Discussion

First, the MAPEs of the 24- and 1-hour-ahead forecasting
models using all three techniques are compared, which is
presented in Table I. Comparatively, using each technique to
forecast 24- and 1-hour-ahead loads, lower MAPE values are
obtained for the last model since load variables of very
short-term are taken into consideration. In addition, by
comparing the MAPEs for 24-hour-ahead forecasting using
three techniques, it can be observed that RBFN provides the
lowest MAPE, being 7.92%, substantiating that RBFN gives
the best prediction accuracy for this forecasting model. The
same result can be also observed from the MAPEs for
1-hour-ahead forecasting model.

Thus it can be concluded that the prediction accuracies using
RBFN are enhanced as absolute values of MAPEs for two
models using RBFN are both the lowest among all the three
techniques. By comparison to the results of [10], we implement
a more comprehensive and suitable model regarding to our
signal, which contributes to a lower value of MAPE. Also we
compared the forecasting results by adding temperature and
humidity data as one of the input variables. It indicates that this
weather information can also affect the prediction accuracy and
plays a vital role in short-term load forecasting.

Second, the training time of 24- and 1-hour-ahead
forecasting with MLP and RBFN is compared in Table III. The
training time of RBFN is three times shorter than that of MLP,
indicating that RBFN is a more powerful forecasting technique
when fast learning is required. This is because RBFN uses
radial basis functions whose value depends only on the distance
from a center point as activation functions instead of sigmoid
functions used by MLP. The typical activation function for

RBF is a Gaussian, that is, there is only a small effect for input
values that are far away from its center if parameters of that
neuron are changed. The main difference between MLP and
RBEN is the absence of hidden layer weights. The parameters
adjusted in the learning process are only the linear mapping
from hidden layer to output layer. Therefore, the error is
ensured by linearity and has a single minimum which is easily
to be found and hence the processing is rapid. Besides, RBF is a
locality type of learning so there is no doubt that RBF will not
be trapped into a local minima and there is no need to restart the
training in case of no error decreasing with further iteration
sometimes happened by MLP during the training process, thus
accelerating training.

Finally, we analyze the Gain for N-hour-ahead forecasting
models by using three techniques, as shown in Table IV, as
larger gain implies more similar MAPE values for different
forecasting time lengths and hence the forecasting technique is
more consistent in terms of time spam within the short-term
range. We conclude that MLP is characterized by a more
consistent behavior with short-term range in terms of forecast
error. It is observed from Fig. 7 that the Gain of RBF is not
increasing positively like the one of MLP and it is sometimes
larger than the Gain of MLP and sometimes smaller, which
indicates that RBF is not consistent in any time spam length of
forecasting. This is mainly because we use kernel k-means
algorithm as the training algorithm for RBF network, in which
data points are mapped from input space to a higher
dimensional feature space through a nonlinear transformation.
The drawbacks of this algorithm are that its final solution is
dependent on the initial position of the cluster centers, and also
the clusters must be separated linearly. Besides, compared with
MLP structure which has one or more hidden layers, RBF only
has one layer so it requires more hidden neurons and hence it
has curse of dimensionality and difficulties with large number
of units. In addition, since our data are collected from the real
small pilot with actual users, it is reasonable that there exist
missing data. With its high sensitivity to the initial condition,
especially when the dataset has noise, it is not reliable to use
RBF technique to forecast different time spam randomly.

V.CONCLUSIONS

Demand Response is a valuable feature in current and future
of Smart Grids and Smart Micro Grids. Accurate LF can help
the DR mechanisms to shift reliably energy usage to periods of
low demand or high availability of renewable energy.
Therefore, LF plays a fundamental role especially in short-term
time spam wherein variability is higher. Different techniques
are applied for STLF over the years but there are few papers
comparing their performances.

In this study, three techniques, i.e. LR, ANNs, RBF, are
assessed and compared for 24- and 1-hour-ahead load
forecasting. It can be concluded that electric signals considered
in the evaluation have strong nonlinear behavior so LR is
useless to forecast the loads and the forecast errors are large.
Also we compare both 24- and 1-hour-ahead forecasting
models in terms of absolute forecast errors and training time.
We can conclude that RBF is the best technique to perform LF
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in the chosen settings because not only has it the smallest
absolute error, but also it has highest computing speed which
can enable RBFN to be potentially applied to attaining
real-time LF which in principle requires fast learning. In
addition, we introduce the gain to analyze the consistency of the
forecasting techniques and consequently conclude that it is
particularly encouraging as MLP may be extended to forecast
the loads of any time length within this range for our signals.
Although RBF has the highest prediction accuracy, it is
sensitive and not consistent if we need to forecast the loads of
different time spam randomly. In contrary, MLP is the best
choice among these three forecasting techniques for our signal
from the concrete scenario if we need to do forecasting with
different time spam randomly.
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