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Abstract—Load Forecasting plays a key role in making today's 

and future's Smart Energy Grids sustainable and reliable. Accurate 
power consumption prediction allows utilities to organize in advance 
their resources or to execute Demand Response strategies more 
effectively, which enables several features such as higher 
sustainability, better quality of service, and affordable electricity 
tariffs. It is easy yet effective to apply Load Forecasting at larger 
geographic scale, i.e. Smart Micro Grids, wherein the lower available 
grid flexibility makes accurate prediction more critical in Demand 
Response applications. This paper analyses the application of 
short-term load forecasting in a concrete scenario, proposed within the 
EU-funded GreenCom project, which collect load data from single 
loads and households belonging to a Smart Micro Grid. Three 
short-term load forecasting techniques, i.e. linear regression, artificial 
neural networks, and radial basis function network, are considered, 
compared, and evaluated through absolute forecast errors and training 
time. The influence of weather conditions in Load Forecasting is also 
evaluated. A new definition of Gain is introduced in this paper, which 
innovatively serves as an indicator of short-term prediction 
capabilities of time spam consistency. Two models, 24- and 
1-hour-ahead forecasting, are built to comprehensively compare these 
three techniques. 
 

Keywords—Short-term load forecasting, smart micro grid, linear 
regression, artificial neural networks, radial basis function network, 
Gain. 

I. INTRODUCTION 

OAD Forecasting (LF) is becoming a key feature for the 
electricity distribution industry in the Smart Grid age. In a 

scenario where electricity prices change dynamically and 
Renewable Energy Sources (RES) put the stability of the grid at 
stake, LF is an essential tool for energy utilities to organize 
operations and to support the planning of investments on 
electric power generation, infrastructure development and 
financial purchasing. LF is even more valuable in scenarios 
where Demand Response (DR) techniques are applied. LF tools 
can in fact enable the devices or customers to learn their 
operating decisions based on the load prediction for next hours 
or days, thus enhancing the DR mechanisms ability to shift 
reliably energy usage and shave load profiles. Short-term load 
forecasting (STLF) is based on statistical procedures which use 
past load and exogenous variables such as weather related 
variables to forecast one hour up to one day energy 
consumption. A large variety of statistical and artificial 
intelligence techniques have been developed for STLF, for 
instance, regression methods [1], [2], neural networks [3]-[6], 
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radial basis function network [7]-[10], expert systems 
[11]-[14], and fuzzy logic [11], etc. Progress in LF can be 
achieved by providing STLF with probability distributions and 
the further direction should be artificial intelligence techniques 
with better understanding of the load dynamics and proper 
models [15], [16]. 

LF techniques can be applied by aggregating data at different 
spatial scales, which are e.g. single or few energy-consuming 
components or devices [17], all loads within a household, a 
building [18], [19], or the entire sections of the grid [20]. Due to 
this multi-scale applicability they are especially useful in 
multi-scale energy systems such as the one proposed by the 
GreenCom project [21], [25]. According to the GreenCom 
concept, currently being deployed in a real small-size pilot with 
actual users, loads information collected from single loads and 
households can be progressively combined, forecasted, and 
possibly controlled at different scales to pave the way towards 
(Virtual) Smart Micro Grids, which can aggregate loads, 
storage as well as generation capacity and act as a single 
cooperating entity towards the remaining of the Smart Grid. 

The purpose of this paper is to analyze and evaluate load 
forecasting in such a concrete scenario comparing three 
different STLF techniques and the influence of weather 
conditions on forecasting process. The considered techniques 
are firstly introduced in Section II. Then programming 
methodologies including data preparation and forecast models 
are presented in Section III. Section IV describes the evaluation 
of those abovementioned three techniques and compares the 
results while conclusions and future works are drawn in Section 
V. 

II. TECHNIQUES FOR SHORT-TERM LOAD FORECASTING 

A. Linear Regression Method 

Linear regression (LR) method is one of the most extensively 
used techniques for STLF. It analyzes the relationship between 
continuous dependent variables and one or more explanatory 
variables and uses the technique of weighted least-squares 
estimation to compute the regression coefficients according to 
the amount of historical data. The following model is applied 
for this analysis wherein t is the sampling time, y the total load, 
v the vector of adapted variables such as time, temperature, 
humidity, wind speed, etc., α vector of regression coefficients: 

 

ytvtαtεt           (1) 
 
The coefficients in the forecast model are calculated from the 

latest actual data prior to the forecasting day. Current 
observations are more important for the forecasting due to the 

Evaluation of Short-Term Load Forecasting 
Techniques Applied for Smart Micro Grids  

Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone 

L



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1996

 

 

variability of load characteristics. The accuracy of forecast 
using regression models depends on the precision with which 
the regression function fits the data. Consequently, a 
pre-analysis of the load is essential for LR if faithful result of 
the analysis is expected.  

B. Artificial Neural Networks 

In the past two decades, there has been a great interest in the 
field known as artificial intelligence (AI) as it offers powerful 
and flexible methods for obtaining solutions to problems 
eluding traditional methods. Artificial neural networks (ANNs) 
and expert system are two major branches of AI. ANNs have 
been proven as a promising alternative to solve complex 
problems [3], [4], [15]. 

A feed-forward ANN is a supervised network organized in 
layers, which can have any number of layers, units per layer 
(neurons), inputs and outputs. Each single neuron is connected 
to other ones of the previous layer through adaptable weights. 
The neuron receives information through a number of input 
nodes, processes it internally where weights are adjusted so that 
the network attempts to produce the desired output, and 
eventually generates a response. Fig. 1 shows the architecture 
of a typical multilayer feed-forward neural network. 

For processing of ANNs, the input values are linearly 
combined in the first stage. Then in the second stage, the result 
is applied as the argument of a nonlinear activation function 
such as bounded sigmoid functions. 

When the network starts to be trained, all the information is 
supplied to it as a data set. After reading each pattern, the 
network produces an output by using the input data and then 
compares it with the training pattern. For any possible 
difference, the weights are changed to abate the error 
accordingly. The computation stops until all the errors are 
under the desired tolerance. The mostly implemented training 
algorithm is back-propagation (BP) which uses a 
steepest-descent technique based on the computation of the 
gradient of the loss function, changing the weights along its 
gradient, reducing the total error and improving the 
performance of the neural networks. 

To design an ANN, the first step is to select an appropriate 
architecture, e.g. the multilayer perception (MLP) which is the 
most popular neural network with multiple hidden layers. 
Subsequently, the number of hidden layers, input nodes, 
neurons per layer, and the type of activation function should be 
determined.  

C. Radial Basis Function Network 

The radial basis function network (RBFN) is another kind of 
feed-forward ANN which is simple yet auspicious thanks to the 
utilization of extensional learning and high computing speed. 
An RBFN consists of an input layer, a hidden layer, and a linear 
output layer. The input layer determines the Euclidean distance 
amongst the input vector and the weight vectors of the hidden 
layer that is composed of units with Gaussian transfer function 
(radial bases) whose weight vectors form a vectored 
quantization of the input space. The output weights are linearly 
combined while the hidden layer utilizes the nonlinear 

transformation for feature extraction during the data 
processing.  

Fig. 2 illustrates its structure. The learning process can be 
divided into two stages. First, the weights of the hidden layer 
are calculated by clustering techniques or are randomly 
assigned in the input space. Alternatively, an optimal method 
can be employed such as orthogonal least squares algorithm. 
Second, the weights of output layer are computed by linear 
regression method. The main difference between MLP and 
RBFN is the absence of hidden layer weights. The parameters 
adjusted in the learning process are only the linear mapping 
from hidden layer to output layer. So it is easier to interpret the 
hidden layer than the ones in an MLP. 

The RBFN requires more neurons than standard BP network 
does, but it is optionally sub-dividable into parallel-training 
fractions of time which is comparatively shorter than it takes to 
train a BP network. 

 

 

Fig. 1 Architecture of multilayer feed-forward neural network 
 

 

Fig. 2 Structure of a radial basis function network 

III. PROGRAMMING METHODOLOGIES 

A. Data Preparation 

As it has been argued that the quality of the input data to the 
ANNs may strongly affect the results [22]-[24], data 
preparation in ANNs modeling is a critical step, especially for 
models with complex data analysis. 

In the current work, the data were collected from single loads 
and households of GreenCom project from 2014/1/1 to 
2014/6/30 and were prepared to comprise six different 
attributes, 
1) L: peak load,  
2) d: days of the week (Monday to Sunday), 
3) h: hours of the day (0 to 24), 
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4) f: a flag indicating whether it is a holiday (0 indicates 
holiday and 1 indicates non holiday) 

5) T: temperature, 
6) H: humidity. 

B. Forecasting Model and Error Analysis 

A variety of papers is dependent solely on one model which 
is 24-hour-ahead forecasting to investigate the techniques for 
STLF [2], [4], [6]-[9], [11]. In order to more comprehensively 
compare the three techniques employed in this paper, a 
1-hour-ahead forecasting is included in addition to the 24-hour 
one. 

The 24-hour-ahead forecasting model is composed of all 
load variables from each of the previous 24-hour load and other 
five attributes described before and the model is like: 

 
L(t)=F[L(t-24), L(t-25), ..., L(t-48), h(t), d(t), f, T,H]    (2) 

 
The 1-hour-ahead forecasting model is similar with 

24-hour-ahead forecasting model instead the load variables are 
from each of the previous one hour load: 

 
L(t)=F[L(t-1), L(t-2), ..., L(t-24), h(t), d(t), f, T,H]      (3) 

 
The forecasting error is measured by the Mean Absolute 

Percentage Error (MAPE) since it is the industry standard 
accepted for examining load forecasting performance. It is 
explained in the equation below where y is the actual load, y ̂ 
estimated value, and N the number of observations, 

 

% ܧܲܣܯ ൌ ଵ

ே
∑ ሾܾܽݏሺݕො െ ሿݕ/ሻݕ ൈ 100ே

௜ୀଵ     (4) 

C. Forecasting Model and Error Analysis 

The current paper introduces a new definition of Gain, which 
innovatively serves as an indicator of short-term predication 
capabilities, as larger gain implies more similar MAPE values 
for different forecasting time length (i.e. 1 hour and 24 hours) 
and hence the forecasting technique is more consistent in terms 
of time spam within the short-term range. 

The Gain is defined as the ratio between the MAPEs of 
N-hour-ahead forecasting (N≤ 24) and 24-hour-ahead 
forecasting using the same technique, 

 
Gain=[MAPE(N-hour-ahead)]/[MAPE(24-hour-ahead)](5) 
 
In this paper, except 1-hour and 24-hour-ahead forecasting, 

we also simulate forecasting with other time length (i.e. 2 hours, 
6 hours, and 12 hours) to have a good grasp of the gain. 

IV. RESULTS AND COMPARISON 

A. 1-Hour and 24-Hour-ahead Forecasting 

For these two forecasting models, one month data (from 
2014/05/01 to 2014/05/31) are acquired for training and the 
loads information collected on June 9th are forecasted using all 
three techniques.  

For load forecasting, there are three vital quantities: 
i. the load shape which is measured by examining the error in 

each hour of a day 
ii. the daily peak load which refers to the highest demand for 

the day 
iii. daily energy which is the sum of all the hourly daily loads 

 

 

Fig. 3 Forecasting values of 24-hour-ahead loads by three techniques 
on June 9th 

 

 

Fig. 4 Forecasting values of 1-hour-ahead loads by three techniques on 
June 9th 

 
All these three quantities are presented in the figures below. 

Results are examined by plotting the actual loads and the 
forecast values, e.g. Fig. 3 illustrates the results for 
24-hour-ahead forecasting on June 9th wherein the solid line 
represents the actual loads while the solid one with star the 
forecast value by using LR, the dashed one with circle the 
forecast value by MLP, and the dashed one with square the 
forecast value by RBF. Fig. 4 shows the 1-hour-ahead 
forecasting of the same day by three techniques. 

For error analysis, MAPEs presented in Table I indicate that 
RBFN improves prediction accuracy in comparison with other 
two techniques. The main limit of LR method, which gives 
unsatisfactory results as MAPE=21.87% for 1-hour-ahead 
forecasting, and 32.55% for 24-hour-ahead forecasting, lies in 
the linear combination of the time series while the collected 
electric power signal has strong nonlinear behavior. Therefore 
it is unavailing to use LR method to forecast such loads. 
Instead, a nonlinear combination, as in MLP and RBF, 
possesses higher flexibility, which attributes to the 
improvement of results. Compared MLP with RBF, RBF has 
the smaller MAPEs than MLP does for both two models. Since 
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in the chosen settings because not only has it the smallest 
absolute error, but also it has highest computing speed which 
can enable RBFN to be potentially applied to attaining 
real-time LF which in principle requires fast learning. In 
addition, we introduce the gain to analyze the consistency of the 
forecasting techniques and consequently conclude that it is 
particularly encouraging as MLP may be extended to forecast 
the loads of any time length within this range for our signals. 
Although RBF has the highest prediction accuracy, it is 
sensitive and not consistent if we need to forecast the loads of 
different time spam randomly. In contrary, MLP is the best 
choice among these three forecasting techniques for our signal 
from the concrete scenario if we need to do forecasting with 
different time spam randomly. 
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