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 
Abstract—Growth and remodeling of biological structures have 

gained lots of attention over the past decades. Determining the 
response of living tissues to mechanical loads is necessary for a wide 
range of developing fields such as prosthetics design or computer-
assisted surgical interventions. It is a well-known fact that biological 
structures are never stress-free, even when externally unloaded. The 
exact origin of these residual stresses is not clear, but theoretically, 
growth is one of the main sources. Extracting body organ’s shapes 
from medical imaging does not produce any information regarding 
the existing residual stresses in that organ. The simplest cause of such 
stresses is gravity since an organ grows under its influence from 
birth. Ignoring such residual stresses might cause erroneous results in 
numerical simulations. Accounting for residual stresses due to tissue 
growth can improve the accuracy of mechanical analysis results. This 
paper presents an original computational framework based on gradual 
growth to determine the residual stresses due to growth. To illustrate 
the method, we apply it to a finite element model of a healthy human 
face reconstructed from medical images. The distribution of residual 
stress in facial tissues is computed, which can overcome the effect of 
gravity and maintain tissues firmness. Our assumption is that tissue 
wrinkles caused by aging could be a consequence of decreasing 
residual stress and thus not counteracting gravity. Taking into 
account these stresses seems therefore extremely important in 
maxillofacial surgery. It would indeed help surgeons to estimate 
tissues changes after surgery.  

 
Keywords—Finite element method, growth, residual stress, soft 

tissue. 

I.INTRODUCTION 

ROWTH and remodeling are one of the main features of 
living tissues. Within the growth mechanics, living 

system can be formulated by mechanical phenomena and 
continuum mechanics [1]. As shown by Fung’s experiments, 
the biological tissues are not stress-free even when entirely 
unloaded [2]-[4]. It is a well-known fact that the residual 
stresses affect the distribution of stresses in tissues [5]. 
Chuong and Fung [3] showed that in the vessel walls, the 
circumferential stress gradient is reduced due to the presence 
of residual stresses. The exact origin of residual stresses in the 
living tissues is not clear, but one of the main causes of these 
stresses is tissue growth and remodeling. 

In early past decades, modeling tissues growth and 
computing the resulting residual stresses in the biological 
structures has gained lots of attention. In the case of soft 
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tissues (in contrast with hard tissues such as bony structures), 
because of some complexity such as nonlinear behavior, 
anisotropy and large deformations, fewer models have been 
proposed. As a pioneering work on soft tissue growth, 
Rodriguez et al. [1] proposed a continuum formulation of 
volumetric growth. The authors defined the concept of 
“fictitious configuration” with considering a virtual state 
between zero-stressed reference and the current 
configurations. Holzapfel and Ogden [6] introduced a multi-
layer model of arterial tissue in which each layer is composed 
of an isotropic matrix and two families of fibers that induce 
the anisotropy. Instead of using fictitious configuration, they 
assumed an open sector of artery as a stress-free reference 
configuration which produces residual stresses when it is 
closed. Among all works, Taber, Epstein and Maugin, 
Lubarda and Hoger, Guillau and Ogden have contributed to 
the understanding of tissues growth and the resulting residual 
stresses [7]-[10]. Recently, experimental analyses showed that 
the in-vivo stiffness of thin biological membranes like mitral 
leaflet is different from its measured ex-vivo stiffness by up to 
three orders of magnitude [11]. Rausch and Kuhl [11], using 
the inverse finite element method, showed that the main 
reason of this disagreement is the existing prestrain which 
relates to the growth-induced residual stresses. Hence ignoring 
the residual stresses and its effects may lead to erroneous 
results [12]. 

In this paper, we have implemented the concept of fictitious 
configuration for growth mechanics in order to determine the 
constitutive formulation of growth in the tissues. However, 
growth itself causes or changes the stress state in the tissues, 
but growth under loading changes the equilibrium state of 
stress. Hence determining the stresses due to growth requires 
an iterative method. In this paper, we propose a gradual 
growth method together with a loading-growth-unloading 
procedure to estimate tissues residual stresses. The method is 
applied to a model of healthy human facial tissues. 

After a brief review of the growth continuum mechanics, 
the gradual growth method to determine the growth multiplier 
and the loading-growth-unloading procedure are presented. As 
a simple verification, the performance and efficiency of the 
proposed method are examined on a cantilever beam as an 
illustrative example. The proposed method is then applied to a 
finite element model of the human face. The residual stresses 
due to isotropic growth under gravity are represented on that 
face model. 
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II.CONTINUUM MODELING OF GROWTH 

A.Continuum Theory and Constitutive Formulation 

Let X  be the position vector of a material point in the 
reference configuration B0 at time t0, and x  its position vector 
in the current configuration Bt at time t. Deformation from B0 
to Bt is denoted by , )x X t   and the deformation gradient 

is; 
 

x
F Grad

X


  


 .                                  (1) 

 
Using multiplicative decomposition of the deformation 

gradient, we introduce F
e

 and F
g

 which are the elastic and 

the growth deformation tensors respectively, 
 

F F F
e g

                                            (2) 

 
To model the behavior of soft tissue, we use a 5-parameter 

Mooney-Rivlin function as the energy strain potential with an 
incompressible constraint which represents a nonlinear 
isotropic hyperelastic material. Since only the elastic tensor F

e
 

generates stress, we use it instead of total deformation gradient 
F in expression of strain energy potential [13] 

 

( , ) ( )F F F
g e e

                                     (3) 

 
Using further decomposition, we introduce the volumetric 

and isochoric parts of elastic strain energy potential 
 

vol
e e e

                                           (4) 

 
This leads to Flory’s decomposition of elastic tensor  
 

.e volF F F
e e

                                         (5) 

 

with 1 / 3( )volF J I
e e

  and 1/ 3( )F J F
e e e

 , we have det( )J F
e e
  

and thus det( )vol volJ F J
e e e

   hence det( ) 1J F
e e
  . 

Therefore, the isochoric part of elastic right Cauchy-Green 
deformation tensor can be determined: 
 

2 / 3. ( )TC F F J C
e e e e e

                             (6) 

 
Considering (3)-(6) for an isotropic material, we can 

express the elastic strain energy function and its related 
isochoric and volumetric parts as a function of the invariants 
of the isochoric part of the elastic right Cauchy-Green 
deformation tensor and J

e
 the determinant of total elastic 

tensor, 
 

2( 3) ( 3) ( 3)
1 1 2 2 3 1

2( 3)( 3) ( 3)
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where  

( )
1

I tr C
e

                                        (10) 

 
1 2 2(( ( )) ( ))

2 2
I tr C tr C

e e
                           (11)  

 
and p  is the Lagrange multiplier to enforce the 

incompressibility constraint. Considered material constants are 
presented in Table I [14]. 
 

TABLE I 
MOONEY-RIVLIN MATERIAL CONSTANTS USED IN THIS PAPER 

C1 C2 C3 C4 C5 

2.5E+3 0 1.175E+3 0 0 

 
To complete our continuum formulation, we introduce the 

second Piola-Kirchhoff stress, the Cauchy stress, and the 
fourth order elasticity tensor in (12)-(14) respectively,  

 

2 voleS S S
e e eC

e


  



                                  (12) 

           
1 . . TJ F S F

e e e e e
                                     (13) 

 
2

4 2
S

vole e
e e eC C C

e e e

 
   

  

ψ

⊗
C C C                    (14) 

 
Because of limitation on space, the detailed derivations of 

equations are not given here. For more detail, see [11] and 
[13]. 

B.Growth Model 

Although, the exact origin of residual stresses in biological 
tissues is still not clear, it is a well-known fact that such 
residual stresses are changed by growth. Fig. 1 shows the 
various configurations based on the concept of fictitious 
configuration and transformations, which are consequents of 
multiplicative decomposition. It should be noted that 
configuration Bg is fictitious grown incompatible 
configuration. 
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