International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:8, 2019

Evaluation of Model-Based Code Generation for
Embedded Systems—Mature Approach for
Development in Evolution

Nikolay P. Brayanov, Anna V. Stoynova

Abstract—Model-based development approach is gaining more
support and acceptance. Its higher abstraction level brings
simplification of systems’ description that allows domain experts to do
their best without particular knowledge in programming. The different
levels of simulation support the rapid prototyping, verifying and
validating the product even before it exists physically. Nowadays
model-based approach is beneficial for modelling of complex
embedded systems as well as a generation of code for many different
hardware platforms. Moreover, it is possible to be applied in safety-
relevant industries like automotive, which brings extra automation of
the expensive device certification process and especially in the
software qualification. Using it, some companies report about cost
savings and quality improvements, but there are others claiming no
major changes or even about cost increases. This publication
demonstrates the level of maturity and autonomy of model-based
approach for code generation. It is based on a real live automotive seat
heater (ASH) module, developed using The Mathworks, Inc. tools. The
model, created with Simulink, Stateflow and Matlab is used for
automatic generation of C code with Embedded Coder. To prove the
maturity of the process, Code generation advisor is used for automatic
configuration. All additional configuration parameters are set to auto,
when applicable, leaving the generation process to function
autonomously. As a result of the investigation, the publication
compares the quality of generated embedded code and a manually
developed one. The measurements show that generally, the code
generated by automatic approach is not worse than the manual one. A
deeper analysis of the technical parameters enumerates the
disadvantages, part of them identified as topics for our future work.

Keywords—Embedded code generation, embedded C code
quality, embedded systems, model-based development.

L. INTRODUCTION

N last decades, the automobile has become a complex

system, and its main function now is just a small part that is
supported by comfort, entertainment, communication and other
functionalities. Rising number of the requirements increases the
logic and control software for systems in scope and complexity.
Millions of lines of code are required, thus meeting the quality
and development timeframe requirements is becoming hardly
possible.

Model-Based Design is an approach that helps handling this
issues. It can be used as a more detailed specification,
visualizing the systems interaction and thus simplifying its
architecture and behaviour. In the real-time applications, they
enable developers to evaluate multiple options, predict system

Nikolay P. Brayanov and Anna V. Stoynova are with the Technical
University of Sofia, bul. "Sveti Kliment Ohridski" 8, 1756 Studentski
Kompleks, Sofia (e-mail: npb@ecad.tu-sofia.bg; ava@ecad.tu-sofia.bg).

performance, test system functionality by imposing 1/O
conditions before the product release, and test designs in a
virtual environment, thus decreasing the costs, finding defects
early in the development cycle and decreasing the total number
of defects.

Generally, usage of a common tool environment, exclusion
of the manual steps from the process and early defect discovery
are expected to bring better performance [1] and decrease of the
expenses [2]. The performance of the software depends on
models and the code that is generated out of it. In this paper is
evaluated how mature are the methods for code generation
based on a real use case - ASH. After manual implementation
of the model and automatic code generation, the performance
of both methods is compared finding if the code generators are
good enough to replace the engineers.

II.THE STATE OF THE ART

There are number of terms used to identify software
development approaches that focus on models as primary
artefacts (in difference to traditional processes that use the
source code) [3]. This paper uses model-based software
development (MBSD), as it is in connection with the primary
aim of the publication — to compare the technical artefacts
related to a particular software realisation.

A.Model-Based Software Development - an Approach for
Code Generation

The topic of MBSD is complicated and have many different
perspectives. The authors [3] enumerate part of the capabilities
of this approach, as solution for platform independence,
software reuse, creating trustworthy software, architecture
analysis of runtime qualities, bridging from problem definition
to solution synthesis, implementation of a formal specification,
“grand unified theory” of software engineering.

More benefits are enumerated in [4] — a model is easier to
maintain and document compared to legacy code and
algorithms, features additions and enhancements — shorter time
cycles with MBSD, effective as knowledge capture mechanism

Another paper on similar topics [5] discus this question, but
none goes in details assessing the generated code’s quality, that
is at best importance for the systems performance and used
hardware, that the price of products depends on. The question
for code quality is part of [1], where however they generate

463

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:8, 2019

code for a DSP. The results are fascinating, demonstrating
hundreds times faster work of generated system. The
application of MBSD with microcontroller is investigated [6].
The author compare manually developed code with two
versions of generated code — with Embedded Coder and
TargetLink. The result shows around 20% difference between
sizes of the codes and below 10% difference in execution time.
Unfortunately there is no analyses about the reasons of this
differences and generally a very small amount of sufficient
published researches on the topic.

The quality of the generated code directly depends on the
quality of the used model. Formal rules and soft guidelines are
helpful for proper model definition. The MAAB Control
Algorithm Modelling Guidelines (MathWorks Automotive
Advisory Board) [7] is a set of publicly available rules for
modelling with Simulink/Stateflow. It has been developed by
automotive OEMs and suppliers with the aim to enforce and
ease the usage of the MathWorks tools within the automotive
industry. The guidelines were published in 2001 and are
continuously updated in order to integrate new features. The
aim is to achieve system integration without problems, well-
defined interfaces, uniform appearance of models, code, and
documentation, reusable models, readable models, problem-
free exchange of models, a simple, effective process,
Professional documentation, understandable presentations, fast
software changes, cooperation with subcontractors, successful
transitions of research or predevelopment projects to product
development. The rules are conceived as a reference baseline.

The most summarized definitions of software quality is given
by the IEEE Standard Glossary of Software Engineering
Terminology [8], [9]. They define it as “the degree to which a
system, component or process meets specified requirements” or
“the degree to which a system, component or process meets the
needs or expectations of a user”. Going into details discussed in
[10], [11], the code quality is relevant to correctness, reliability,
efficiency, integrity, usability, maintainability, flexibility,
testability, portability, reusability, etc. This paper is focused on
the code generation and comparison of its parameters, rather
than on the processes that lead to its construction, even though
they are closely related. In this sense it investigates the
efficiency, measuring the resources that are used — memory and
execution time.

B. Comparable Code Quality Parameters

The non-volatile memory contains the code and constants
that are referenced by it. It is easily estimated during
compilation time.

The volatile memory contains data, including all global and
static variables, and stack. The first could be captured during
compilation, however task size estimation is not a routine job.
Underestimating the maximum stack usage leads to stack
overflow and thus system failure, overestimating means
wasting valuable memory resources. In [12] is discussed a
model based approach for estimation of the maximum stack
usage. This is a prove that formal methods for software
development could improve the process adding extra checks,
however it can’t be used on already developed code. Another

publication [13] investigates the worst case stack measurement
and enumerates the possibilities. The use case ASH system has
two periodic interrupts with small frequency, and measurement
of the stack with a debugger could correctly esteem the
maximum consumed stack memory.

Measurement of the worst case execution time is very
important for safety-critical embedded systems that have hard
real-time characteristics. Failure to meet deadlines may be as
harmful as producing wrong output or failure. Estimation of
execution time is a difficult problem because of the
characteristics of real time software and hardware [14]. In
current research the measurements are based on hardware
supported software monitoring.

C. MBSD Is Not Panacea

MBSD may be more efficient and may have shorter and
cheaper development cycles, however it contains possible
weaknesses. For example [14] reports that their usage creates
dependencies on the tools that manipulate the model and
generate code, and introduces risks associated with the
continued availability of the tools and compatibility of new
releases of the tools. Moreover, it depend on the system domain
(business system, command and control system, avionics
system, etc.) and the methods used throughout the system
lifecycle. These are part of the reasons why [15] suggests that
assessment of a tool should be conducted only after gaining an
understanding of software engineering methods and choosing a
particular method. Thus, comparison of the codes can hardly be
stated as objective. To have a representable research it needs to
be applied on many different types of functionalities as well as
different tool chains.

I1I. THE USE CASE AND ITS MODEL

An ASH project is used to demonstrate the capability of the
code generated from models. The functionality appears in most
of the modern cars and is responsible for heating up the seats to
required temperature. Commonly, it contains a heating element,
temperature sensor, command gateway and a controller that
should manage all of them [16]-[18].

<pomr supply |

three buttons keyboard |

Automotive Seat Heater <

(ASH) I2c temperature sensor

LIN communication

i

Fig. 1. Automotive seat heater system

In the current case, a LIN communication channel and two
buttons are responsible for setting requested temperature. The
third button selects if communication or buttons commands
should be handled. Additionally, the ECU is responsible for
measurement of the supply voltage and behave differently in
case of over/under/normal voltage Fig.1.

The use case was chosen as representative, containing

464

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:8, 2019

different functionalities, digital and analog signals, sensors and
actuators, communication. It has periodical and interrupt

Complox drivers ; Services

input drivors

P

HoryViallige

| Applicabions Sarvices

Bl i

Fig. 2. Model of automotive seat heater

Based on the MAAB criteria was created a model of the
device, Fig. 2.

The model architecture contains 4 layers - input and output
drivers, complex drivers, services and applications. Embedded
coder is used for target code generation, giving priority to ROM
and then RAM optimization. Additionally, the model and the
architecture that it defines were used for manual software
implementation. Both software packages were used for system
tests, evaluating their behaviour.

IV.RESULTS

Current paper is evaluating the maturity of code generation,
comparing the technical parameters memory usage and
execution time for manually developed and generated code,
using three compilers so to achieve required level of objectivity.

In Table I are listed all used modules and the memory that
they consume. The data is parsed from the particular map files
in release mode. It is important to be noted that this results are
not representable as comparison between compilers. The
configuration of the different compilers is not intended to be
equal. As for the fair comparison of compiled code, compilers
should use same configuration with manual and generated
codes.

The table shows out the code and data memory taken from
each particular module compiled with a particular complier.
Additionally the difference between generated and manual code
based on the size of the manual code is calculated and presented
in percent. Thus, having 1% positive difference means that
generated code is 1% bigger than the manual one and -1%
shows that it is 1% smaller than it. This method is used for all
other calculations.

Analysing the used data one could observe enormous

services and is simple enough, so all the functionalities could
be run in one task for easier measurements.

Complex drivers culpul drivers

SealHostorApp

differences in the data section — for example 4000% in main, -
100% in many others. This multiplies for all three compilers.
Looking into the code was concluded that generated code
distributes the variables in different way and some of the
variables are mapped differently. A further prove for this is
found during general memory usage comparison, placed in a
later table.

Almost all generated modules use more memory to store
their code. The reported difference is from 6 up to 133%, and
the last one is remarkable. The analysis shows that in most of
the cases, the small differences are caused by the extra checks
of interface data that code generator inserts to increase the
algorithm’s protection. The manual coded variant is based on
verified and limited interface data and this kind of checks are
considered to be redundant. Additionally, part of the modules
are small and even a small code overhead causes a big
percentage difference.

The largest difference is reported in SysCtrl and the reason,
aside of already mentioned interface data checks, is a tricky
code optimization that have been applied. Using tables with
function pointers is fast and effective method for optimization
of multimodal systems as proposed [19]. It can’t be applied on
model based bases, however its usage for projects with higher
safety integrity level is not allowed, so generally this cannot be
assumed as a particular issue.

In contrast of the extra memory used by most of the modules,
generated version of HeaterApp consumes 27 to 39%, or 64 to
112 bytes less memory to store the code. The code generator is
capable to optimize the calculations, in relevance with available
arithmetic. Instead of large types’ memory and time-consuming
operations as multiplication and division, it uses a sequence of
shift operations, thus bringing optimization in code size, but
also in execution time, as demonstrated later. The comparisons

465

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:8, 2019

of average code sizes are published in Fig. 3 for code and Fig.
g p g g 50
4 for data. Each module is represented by its sequence number 0
from the table behind.
30
TABLEI 20
CODE AND DATA SIZE IN BYTES, CORRESPONDING TO DIFFERENT COMPILERS
IAR C/C++ 10
k4 Codi TI GNU v6.2.1.16 Compiler for 0
e oding
E Style v16.9.4.LTS (SOMNIUM) 1\/[7511’14i30 1 2 3 4 5 6 7 8 9 10 11
E 1.
code data code data code data . . .
Manual %6 | 370 1 462 5 Fig.4. Average code size of the used modules, represented by its
§ Generated 480 4l 496 4 576 44 sequence number. Generated — red; manual — blue;
E
Diff, % 244 4000.0 34.1 4000.0 24.7 780.0 .
<= Manual 240 12 290 12 214 12 To calculate the overall memory usage, the required stack
z £ Generated 176 6 178 6 144 6 size should be added Table 1II.
=
© Diff, % -26.7 -50.0 -38.6 -50.0 -32.7 -50.0 TABLEII
) Q Manual 292 13 272 13 260 13 MEASURED USAGE OF STACK.
E 5 Generated 406 18 456 18 364 18 1 GNU v6.2.1.16 IAR C/C++
Diff, % 39.0 385 67.6 38.5 40.0 385 Coding Style , - ¢y 1o (SOMN'II'H{’I) Compiler for ~ Average
~ Manual 236 3 266 3 370 2 T MSP430 7.11.1
E 2 Generated 264 3 318 3 410 2 Manual 61 42 44 49
® Diff, % 11.9 0.0 19.5 0.0 10.8 0.0 Generated 75 63 57 65
= Manual 292 10 366 10 310 9 Diff 14 21 13 16
2 % Generated 382 0 414 0 362 0 Diff, % 23.0 50.0 29.5 32.7
Diff, % 30.8 -100.0 13.1 -100.0 16.8 -100.0
v — Manual 400 30 484 30 498 32 The experiment shows that generated code uses 14 to 21
@ .
%é Generated 426 30 534 30 540 32 bytes more, that is 23 to 50%. As already shown, the generated
Diff, % 6.5 0.0 10.3 0.0 8.4 0.0 code consumes less data than manual one, but the stack size is
g £ Manual 286 6 362 6 380 3 bigger. It comes to be a difference between the particular
5 2 Generated 270 1 344 1 298 1 manual coding style and the generated one. Summarized data
Diff, % 5.6 833 50 833 216 -66.7 from ROM and RAM usage is in table 3.
A= Manual 32 2 42 2 32 2 Execution times have enormous deviations up to 130%. The
gz Generated 40 0 48 0 38 0 execution times for generated HeaterApp is 80% less than the
Diff, % 25.0 -100.0 14.3 -100.0 18.8 -100.0 . . .
manual implementation because the already mentioned
= Manual 132 8 148 8 130 6 e .
22 Generated 166 0 206 0 156 0 optimization of complex calculation. The deviations in small
Q Diff. % 2538 1000 392 1000 20.0 1000 Measurements are bigger because of the small overheads caused
y, /0 . - B . - . . - .
w Manual 150 2% 174 2% 134 12 by measurement approach as well as the fact that a small
= ‘(ﬁ_’ Generated 350 4 406 4 280 3 difference represents a large percent from the benchmark value.
- Diff, % 1333 84.6 1333 84.6 109.0 -75.0 What looks to be unreasonable is the 103% difference in
w — Manual 27 2 28 2 22 2 KbdDrv. This relevantly simple module interacts with many
L8 € Generated 26 0 40 0 30 0 others and so measuring its execution time includes these calls.
°% i 182 -100.0 429 -1000 364 -100.0 Thus, individual calculations are deemed to not correctly
represent the parameters and summarized data are suggested as
600 indicative for the systems’ performance.
500 TABLEIIT
400 AUTOMOTIVE SEAT HEATER OVERALL MEMORY USAG
300 TI GNU IAR C/C++
. Memory v6.2.1.16 Compiler for
200 Coding Style type V16"1"9$.4.L (SOMNIU MSP430 Average
100 M) 7111
0 Manual code+const 4928 5333 5308 5190
1 2 3 4 5 6 7 8 9 10 11 data+stack 182 163 150 165
Generated codetconst 5446 5971 5694 5704
Fig.3. Average code size of the used modules, represented by its data+stack 186 174 171 177
sequence number. Generated — red; manual — blue Diff codetconst 518 638 386 514
data+stack 4 11 21 12
Diff. % code+const 10.5 12.0 7.3 9.9
(]
’ data+stack 2.2 6.7 14.0 7.3

466

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:8, 2019

Measuring the execution times result in Table IV.

TABLE IV
AUTOMOTIVE SEAT HEATER WORST CASE EXECUTION TIMES
z IAR C/C++
g Coding TI GNU v6.2.1.16 Compiler for
£ Style v16.9.4.LTS (SOMNIUM) MSP430
7.11.1
. = Manual 33.7 28.3 23.8
o
S 2 Generated 6.7 6.0 5.6
g
Diff, % -80% -79% -76%
w0 Manual 10.8 10.6 10.6
- O
2 E Generated 11 10.9 10.8
= B
Diff, % 2% 3% 2%
= Manual 37.2 23.9 12.2
Ce
3 2 Generated 37.7 243 124
]
Diff, % 1% 2% 2%
5 Manual 6.3 7.7 8.7
S Generated 12.8 123 10.6
=
< Diff, % 103% 60% 22%
g = Manual 5.5 6.1 6.5
(]
S 2 Generated 5.6 6.1 6.5
S
© Diff, % 2% 0% 0%
Manual 34.2 28.9 24.6
=<«
(,E S Generated 24.8 245 243
Diff, % -27% -15% -1%
= Manual 4.2 4.9 53
Oe
S 2 Generated 53 42 35
]
Diff, % 26% -14% -34%
§ Manual 53 52 5.2
B Generated 38 47 53
=
= Diff, % -28% -10% 2%
@ Manual 10.0 9.6 9.4
& Generated 8.6 102 11.4
=
Diff, % -14% 6% 21%
14 - Manual 42 4.9 5.3
2 e
o} é Generated 53 52 52
= Diff, % 26% 6% 2%

Fig. 5 visualize the worst-case execution time for each of the
modules. It is calculated as average of the measurements of all
compilation versions.

35,00
30,00
25,00
20,00
15,00
10,00
5,00
,00

6 7 8 9 10

Fig.5. Average worst case execution time of each module,

represented by its sequence. Generated — red; manual — blue
To summarize, all worst-case times are summed, estimating
the worst-case system’s behaviour. Additionally, measurement
of execution time of the real integrated system is done. Results
are part of Table V.

TABLE V
SUMMARIZED EXECUTION TIMES — A SUM OF ALL MODULES WORST CASES
AND THE FULL INTEGRATED SYSTEM’S WORST CASE

TI IAR C/C++
16.9.4.L GNU v6.2.1.16 Compiler for
V1074 (SOMNIUM) MSP430
TS
7.11.1 average
Manual 1514 130.1 111.6 131.0
SUM Generated 121.6 108.4 95.6 108.5
Diff, % -19.7 -16.7 -14.3 -17.2
Manual 119.7 95.3 77.8 97.6
Whole
task Generated 110.5 82.2 63.3 85.3
Diff, % -1.7 -13.7 -18.6 -12.6

The summed up times are greater than the whole system time,
because of measurement overhead and the fact that in the real
live is impossible all modules to work on maximal load in same
time. For the summed performance are calculated 17%
difference. When it is measured in real time work the manual
implementation takes up to 13% more time.

V. CONCLUSION

In current research was evaluated the code generation for
embedded systems, using Matlab tools and ASH as a use case.
The comparison between generated and manually created
implementation shows that generated code consumes 10% more
non-volatile memory and 7% more volatile memory.

The reason for this difference in code’s size was found in
extra check that is inserted to validate modules’ interface data.
Additionally, manually developed code use an optimization,
based on function pointers, that model based approach does not
support. This is a minor benefit, since this technic is not allowed
for higher safety integrity levels.

Volatile memory consists of data and stack. The size of used
data by both of approaches is very similar, and generated code
consumes only 3% less memory (4 bytes). Stack usage,
however differs and generated code consumes up to 50% more
memory, depending on the used compiler. This shows that
automatic coding style is more stack-hungry.

Measured execution times for different modules varies up to
100%. It was noticed that automatic code generation is capable
to optimize complex calculations using a simple bit shifting.
This makes the generated code running 13% faster on average.

The MBSD is a complex approach based on abstractions and
depending on the technical as well as non-technical context,
thus general conclusion about its applicability is impossible.
However, based on particular case was proved that the
generated code has relevantly small deviations from the
manually developed and this makes is suitable and productive
because of all other benefices that the method carries.

467

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:8, 2019

ACKNOWLEDGEMENT

The paper is published with the support of the project No
BG05M20P001-2.009-0033 “Promotion of Contemporary
Research Through Creation of Scientific and Innovative
Environment to Encourage Young Researchers in Technical
University - Sofia and The National Railway Infrastructure
Company in The Field of Engineering Science and Technology
Development” within the Intelligent Growth Science and
Education Operational Programme co-funded by the European
Structural and Investment Funds of the European Union.

REFERENCES

[1] Einfochips, “MODEL-BASED DESIGN FOR EMBEDDED
SOFTWARE”, = White Paper, https://www.einfochips.com/wp-
content/uploads/resources/model-based-design-whitepaper.pdf

[2] J.Lin, “Measuring Return on Investment of Model-Based Design”, White
Paper,https://www.mathworks.com/content/dam/mathworks/mathworks-
dot-com/solutions/model-based-design/mbd-roi-
video/Measuring_ROI_of MBD.pdf

[3] J. Klein, H. Levinson, J. Marchetti, “Model-Driven Engineering:
Automatic Code Generation and Beyond”, CMU/SEI-2015-TN-005

[4] B. Schatz, A. Pretschner, F. Huber, J. Philipps, ‘“Model-Based
Development of Embedded Systems”, DOI: 10.1007/3-540-46105-1_34

[5] M. Broy, S. Kirstan, H. Krcmar, B. Schétz, J. Zimmermann, ,,What is the
benefit of a model-based design of embedded software systems in the car
industry?, DOI: 10.4018/978-1-4666-4301-7.ch017

[6] N. Ajwad, “Evaluation of Automatic Code Generation Tools”, ISSN
0280-5316

[7] MathWorks® Automotive Advisory Board “Control Algorithm Modeling
Guidelines Using MATLAB®, Simulink®, and Stateflow”,
https://www.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-
systems-n-control/idsc-dam/Lectures/Embedded-Control-
Systems/AdditionalMaterial/Miscellaneous/MAAB%20Control%20Alg
orithm%20Modeling%20Guidelines%20using%20MATLAB%20Simuli
nk%20and%?20Stateflow.pdf

[8] “610.12-1990 - IEEE Standard Glossary of Software Engineering
Terminology”, DOI: 10.1109/IEEESTD.1990.101064

[91 “1219-1998 - [IEEE Standard for Software Maintenance”,
10.1109/IEEESTD.1998.88278

[10] S.H.Kan, “Metrics and Models in Software Quality Engineering, Second
Edition”, ISBN: 0-201-72915-6, Chapter 4: Software Quality Metrics

Overview
[11] D. Chappell, “THE THREE ASPECTS OF SOFTWARE QUALITY:
FUNCTIONAL, STRUCTURAL, AND PROCESS”,

http://www.davidchappell.com/writing/white_papers/The Three_Aspect
s_of Software Quality v1.0-Chappell.pdf

[12] C. Ferdinand, R. Heckmann, H. J. Wolff, C. Renz, O. Parshin, R.
Wilhelm, “Towards Model-Driven Development of Hard Real-Time
Systems Integrating ASCET and aiT/StackAnalyze”,
https://www.absint.com/aiT_ASCET.pdf

[13] T. Yu, M. B. Cohen, “Guided Test Generation for Finding Worst-Case
Stack Usage in Embedded Systems”, DOI: 10.1109/ICST.2015.7102592

[14] S. Petters, “Comparison of Trace Generation Methods for Measurement
Based WCET Analysis”, In Proceedings of the 3rd International
Workshop on Worst Case Execution Time Analysis, 2003, page 61-64

[15] R. Firth, V. Mosley, R. Pethia, L. Roberts, W. Wood, “A Guide to the
Classification and Assessment of Software Engineering Tools”,
CMU/SEI-87-TR-010

[16] “Heated Seat Module”, http://moojohn.com/truck/heatedseats2.pdf

[17] “Car seat heater”,
https://www.autokraitis.lt/documents/csh_en___print_v1.pdf

[18] “Heated seat system”, http://moojohn.com/truck/heatedseats.pdf]

[19] A. Milanova, A. Rountev, B. G. Ryder, “Precise Call Graphs for C
Programs with Function Pointers”, Automated Software Engineering
(2004) 11: 7. https://doi.org/10.1023/B:AUSE.0000008666.56394.al

468

