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Abstract—The choice of finite element to use in order to predict 

nonlinear static or dynamic response of complex structures becomes 
an important factor. Then, the main goal of this research work is to 
focus a study on the effect of the in-plane rotational degrees of 
freedom in linear and geometrically non linear static and dynamic 
analysis of thin shell structures by flat shell finite elements. In this 
purpose: First, simple triangular and quadrilateral flat shell finite 
elements are implemented in an incremental formulation based on the 
updated lagrangian corotational description for geometrically 
nonlinear analysis. The triangular element is a combination of DKT 
and CST elements, while the quadrilateral is a combination of DKQ 
and the bilinear quadrilateral membrane element. In both elements, 
the sixth degree of freedom is handled via introducing fictitious 
stiffness. Secondly, in the same code, the sixth degrees of freedom in 
these elements is handled differently where the in-plane rotational 
d.o.f is considered as an effective d.o.f in the in-plane filed 
interpolation. Our goal is to compare resulting shell elements. Third, 
the analysis is enlarged to dynamic linear analysis by direct 
integration using Newmark’s implicit method. Finally, the linear 
dynamic analysis is extended to geometrically nonlinear dynamic 
analysis where Newmark’s method is used to integrate equations of 
motion and the Newton-Raphson method is employed for iterating 
within each time step increment until equilibrium is achieved. The 
obtained results demonstrate the effectiveness and robustness of the 
interpolation of the in-plane rotational d.o.f. and present deficiencies 
of using fictitious stiffness in dynamic linear and nonlinear analysis. 
 

Keywords—Flat shell, dynamic analysis, nonlinear, Newmark, 
drilling rotation.  

I. INTRODUCTION 
UMERICAL shell structures analysis became popular 
with the advancement has been made in finite element 

method and the advancements in digital computers since they 
allow possibility to solve large systems of equations quickly 
and efficiently. Then such a topic has been developed for 
several years and many research works have been made to 
attain effective and reliable shell finite elements for the 
numerical static linear, non linear and dynamic nonlinear 
analysis of shell structures. 

The focus of this work is to develop and evaluate two kinds 
of flat shell elements for the numerical analysis of thin shell 
structures, which are triangular and quadrilateral flat shell 
elements with fictitious in-plane rotational stiffness and the 
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same quadrilateral element with interpolated nodal in-plane 
rotational stiffness. 

This paper is organized as follows: the flat shell finite 
elements are introduced in Section 2. Section 3 discuss the 
advantages of interpolate the rotational in-plane stiffness 
instead the use of fictitious stiffness for geometrically non 
linear analysis. Section 4 describes dynamic analysis for the 
proposed elements. Extension of linear dynamic to 
geometrically non linear dynamic analysis is given in Section 
5. Section 6 represents numerical examples and discussions. 
Finally, section 7 concludes the paper.  

II.  FLAT SHELL ELEMENTS 
Flat shell elements are developed by combining membrane 

elements with plate bending elements. Then the element 
stiffness matrix for a flat shell element is first assembled by 
superposing the membrane stiffness and bending stiffness at 
each node in the local coordinate system. Subsequently, it will 
be transformed from the local to the global coordinate system 
where the shell element has to deal with six d.o.f at each 
corner node. 

An important aspect of this work is to implement four 
elements on a computer program: 

1) The first one is a combination of the DKQ quadrilateral 
plate bending element of Batoz et al [1] which uses three out 
of plane d.o.f at corner node, and the four node isoparametric 
quadrilateral plane-stress element which uses two nodal 
translations d.o.f at corner node. The resulting element is a 
four node quadrilateral flat shell element with 5 d.o.f at each 
corner node, this element is noted “Quad”. To avoid stiffness 
matrix singularity, the solution of fictitious stiffness is adopted  

2) The second is a combination of the DKT triangular plate 
bending element of Batoz et al [2] which uses three out of 
plane d.o.f at corner node, and the three node isoparametric 
CST triangular plane-stress element which uses two nodal 
translations d.o.f at corner node. The resulting element is a 
triangular flat shell element with 5 d.o.f at each corner node, 
this element is noted “Trian”. The solution of fictitious 
stiffness is adopted to avoid stiffness matrix singularity. 

3) The third element noted “Qdrill” is a four node 
quadrilateral flat shell element with 6 d.o.f at corner node. It is 
a combination of the DKQ quadrilateral plate bending element 
Batoz et al [1] which uses three out of plane d.o.f at corner 
node, and Allman’s quadrilateral plane-stress element of 
Ibrahimbegovic et al [3] which uses three nodal translations 
d.o.f at corner node. In this case the rotational degree of 
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freedom θz is included in the plane-stress theory formulation 
as a parameter in the in-plane displacement field interpolation.  

The elements “Train” and “Quad” use the classical 
approach that consist of associate a fictitious stiffness at the 
sixth d.o.f for each node. It is a relatively small constant 
inserted at appropriate places within the elementary stiffness 
matrix to avoid system singularity when all the elements 
meeting at one node are coplanar [4,5]. Zienkiewicz suggested 
the following overall form approximation of the moment-
rotation relationship for triangular element [4]:  
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Even that solution can solve the problem of stiffness matrix 

singularity, but it doesn’t represent real behavior because of 
the fact that a fictitious stiffness has been added. Furthermore, 
some research works on the effect of varying α constant 
determined that satisfactory results are obtained as α is smaller 
value [6,5,7]. Recently, much works was directed to include 
the in-plane rotation as an effective d.o.f [8,9,10,6,3]. The 
main goal behind including normal in-plane rotation d.o.f at 
corner nodes as a real d.o.f is to avoid the well-known sixth 
degree of freedom problem for shell elements (stiffness matrix 
singularity) and to improve the in-plane behviour of the plane-
stress element because a higher order plane-stress element is 
formulated by this way.  

III. GEOMETRICALLY NONLINEAR ANALYSIS 
The nonlinear analysis is carried out using the incremental 

method. It is based upon the progressive increase of the 
applied loads to obtain the non linear response in an 
incremental way satisfying the equilibrium equations in 
successive force increments. In purpose to avoid large 
rotations, the updated Lagrangian corotational formulation is 
an efficient approach to be chosen. In such approach the rigid 
body motion is eliminated with the movement of the system 
axis following the new configuration. Whereas, during each 
time step between the time t and t+Δt which represent one 
force increment, the configuration Ct+Δt to be calculated is 
obtained starting from the configuration Ct considered as 
known. Therefore the finite elements developed for linear 
analysis in small displacements, can be applied for large 
displacements and large rotations nonlinear analysis. 

In this context, reference position of the triangular element 
which has 3 nodes is easily updated in the corotational system, 
that’s not the case of quadrilateral elements which has 4 nodes 
that must be coplanar in the reference position that is not 
assured at the deformed configuration Ct which will be used as 
reference to obtain the configuration Ct+Δt. In purpose to 
overcome the problems related to the probably non planarity 
of the deformed quadrilateral, we proposed to use a local 
reference plane and technics as described by Boutagouga  
[11].  

A. Tangent Stiffness Matrix 
Since corotational coordinate system makes rotations and 

translations with the element, large translations and large 
rotations are absorbed by the motion of the corotational 
system axis. Therefore the deformation is always measured on 
the element local reference level. In incremental way, Green’s 
strain tensor that representing shell element, is calculated in 
reference position that’s always related to the corotational 
system axis, as: 
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The equilibrium equation is obtained by application of the 

virtual work principle in incremental form between the 
configurations Ct and Ct+∆t: 

 

∫∫ Δ−=ΔΔ+Δ
V ijijextV ijijijklijij VdTWVdDT )())()(( * εδεδεεδ  (3) 

 
Δεij , Δε*

ij : are linear and nonlinear part of the incremental 
Green’s strain tensor 

Tij : is the Cauchy stress ,  Dijkl : Hooke Matrix  
The tangent stiffness matrix [KT], with the same shape 

functions defined for linear analysis is written: 
 

{ } [ ]{ }qKqVdDT T
T

V ijijijklijij ΔΔ=ΔΔ+Δ∫ )())()(( * δεδεεδ  (4) 

 
Where: 
 

[ ] [ ] [ ]σKKKT += 0  (5) 
 

[KT]: Tangent stiffness matrix, it must be formed at each 
iteration 

[K0]: small displacement matrix for linear analysis 
[Kσ]: initial stress matrix 
The internal forces {Fint} are such as: 
 

{ } { }int)()( FqVdT T

V ijij Δ=Δ∫ δεδ  (6) 

B. Newton-Raphson Algorithm 
The nonlinear process is solved in an incremental way with 

correction of equilibrium by the standard iterative Newton-
Raphson method associated to the arc-length control or load 
control techniques. 

In discretized form, the equilibrium equation is written by 
considering an incremental load factor ∆λ: 

 
[ ]{ } { } { }extT PRqK λΔ+=Δ  (7) 
 

Where :{R} represents unbalanced forces, and {Pext} the 
initial loads. 
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IV. LINEAR DYNAMIC ANALYSIS  
Physical equilibrium of structural dynamic behavior is 

approximated to the following set of second-order, linear, 
differential equations, written on matrix form as: 

 
PKuuCuM =++  (8) 

 
Where u : Nodal displacement vector. 
M : Structural mass matrix 
C : Structural damping matrix 
K : Structural stiffness matrix 
P : Applied load vector 
We solved this system of equations using direct numerical 

integration to obtain direct transient response since the 
solution and the excitation are time varying. Many algorithms 
of direct time integration numerical resolution have been 
developed and presented in literature where they differ by the 
manner used to express the relationship between displacement, 
velocity and acceleration [12, 13, 14]. However, all methods 
can fundamentally be classified as either explicit or implicit 
integration methods. Generally, implicit algorithms are most 
effective for structural dynamic problems, and large time step 
can be used since they are can be numerically stable 
algorithms, while explicit algorithms are very efficient for 
wave propagation problems and such high frequency modes, 
but they are numerically instable algorithms. 

A. Newmark Algorithm 
Shell structure’s systems are generally resolved using 

Newmark’s method as in this investigation. It is a single step 
method which assumes that the acceleration is not smooth 
function (because of some phenomenon in real structures like: 
buckling of elements, nonlinear hysteresis behaviour of 
material, and contacts between parts of structure). 
Subsequently, dynamic equations of motion are solved step by 
step by satisfying dynamic equilibrium at discrete points in 
time. Therefore, the eqn (8) is considered at time (t+Δt) as: 

 

tttttttt FKuuCuM Δ+Δ+Δ+Δ+ =++  (9) 
 

Where: ttu Δ+ , ttu Δ+  and ttu Δ+  are respectively the  

)(),(),( ttuandttuttu Δ+Δ+Δ+ approximations at time 
(t+Δt). 

The Newmark process allows the dynamic equilibrium of 
the system at time (t+Δt) to be written in terms of the 
unknown nodal displacements ttu Δ+  as: 

 

ttt

ttttttt

ubububC
ubububMFuKCbMb

654

32141

(...
...)()(

−−+
+−−+=++ Δ+Δ+  (10) 

 
Where the constants b1 to b6 are defined as: 
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β and γ are parameters which control the stability and 

accuracy of the algorithm. 

B. Mass Matrix 
The elementary consistent mass matrix is derived from the 

kinetic energy expression using the virtual work principle. It is 
given by: 

 
[ ] [ ] [ ][ ] dANPNM

A

T ⋅= ∫  (11) 

 
Where, [P] is the inertia matrix, and [N] is the shape 

function matrix that can be the same shape function adopted 
for the displacement interpolation, or it can be the linear 
geometric shape function as adopted in this work. 

V.  NEWMARK’S METHOD FOR NONLINEAR DYNAMIC 
ANALYSIS  

Once the finite element models of geometrically nonlinear 
analysis and linear dynamic analysis has been created, 
nonlinear dynamic analysis will be easily obtained using 
Newmark direct time integration algorithm. The dynamic 
equilibrium equations can easily be solved using iterations 
within each time step (Δt) to obtain the dynamic nonlinear 
response of shell structure, i.e., the equilibrium equation of 
motion can be solved by Newmark’s step by step integration 
method, where the Newton-Raphson algorithm is employed 
for iterating within each time step increment until equilibrium 
is achieved. 

Also, in order to extend the linear dynamic scheme to 
taking account for geometrically nonlinear behavior, the nodal 
internal (nonlinear) elastic forces must be taken as: 

 
[ ] { } dvBuN

v

T ⋅= ∫ )()( εσ  (12) 

 
Then, the equilibrium equation of motion is written as: 
 

tttttttt RuNuCuM Δ+Δ+Δ+Δ+ =++ )(  (13) 
 

Where: ttR Δ+  is the nodal residual forces vector at time 
(t+Δt) 

ttuN Δ+)(  is the equivalent internal forces vector at time 
(t+Δt), it is written as:  

 
[ ] { } dvBuN

v tt
T

tttt ⋅= ∫ Δ+Δ+Δ+ )()( εσ  (14) 

 
Tangent stiffness matrix is used, and it must be formed and 

triangularized at each iteration within each time step.  

VI. RESULTS AND DISCUSSIONS 
A finite element analysis program that calculates 

deflections was developed in order to verify the accuracy of 
the tree elements considered in this study. This program was 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:7, No:2, 2013

115

 

w

di
el
lit
di

fin
co
is 
th
cu
B
bo
m
as

R=
an

E 

el
re
ite
at
“T
el
 

written in FOR
Two exampl

isplacements 
lements. Also
terature. A d
iscussion of th

A. Cylindrica
This exampl

nite elements
oncentrated lo

defined by: 
hickness h, an
urved edges 
ecause of the
oundary cond

modelized. The
s follows: 

 
=2540 mm; L
nd  ρ= 3210.05

1) Geometric
First, geome
= 3.10275 kN
- For h=12.

lement, "Fig. 
eference solu
erations which
t "Fig. 2" is
Trian” require
lement require

Fi
 

TRAN77. 
e problems w
obtained by

o the results 
description of 
he results are p

al Shell 
le is widely u
s. It’s a thin 
oad applied in

radius of cu
nd opening an
are free whil
e double sym
ditions, only
e geometrical 

L=2540 mm; θ
5 Kg/m3. 

cally Non Line
etrically non l
N/mm2 and for 
7 mm: The 
2" present a 
tion of Sura
h requires “Q
 28 iteration
es 60 iteratio
es more than 7

ig. 1 Geometry 

were selected f
y the defere
were compar

f each examp
presented in th

used in literat
cylindrical s

n its centre. G
urvature R, lo
ngle θ as sho
le its straigh

mmetry of geo
y one quarte
and mechanic

θ = 0,1 rad; h

ear Response 
inear analysis
two thickness
results obtain
precise conv

ana [15]. Th
Qdrill” to plot
ns, while the
ons and the q
70 iterations. 

of the cylindric

for the verifica
ent developed
red with thos
ple problem a
he following s

ture to validat
shell subjecte

Geometry of th
ongitudinal len
own in "Fig. 

ht edges are 
ometry, loadin
er of the s
cal characteris

h=6.35 mm; ν

s was carried 
ses: 
ned by the “
vergence towa
he total num
t the curve pr
e triangular e
quadrilateral “

cal shell 

 

ation of 
d shell 
se from 
and the 
section: 

te shell 
ed to a 
he shell 
ngth L, 
1". Its 

hinged. 
ng, and 
shell is 
stics are 

ν = 0,30 

out for   

“Qdrill” 
ards the 

mber of 
resented 
element 
“Quad” 

 

sen
is 
dis
ite
usi
an

wi
pre
rot
the
an
ele
ve
som
rig
dis
res
res

mi
wi
as 

Fig. 2
 
- For h=6.35
nsible behavio

noted. For 
splacement c
eration numbe
ing "Qdrill" e

nd it's delicate 
The comparis

ith those of th
esent some 
tational d.o.f 
e case for the

nd “Trian”. Bu
ement require
ry large numb
me times div

gidity suffer t
splacement cu
sults from co
sidual force ca
By conseque

inimize non c
ith static linea
α is smaller.
 
 

0

5

10

15

20

25

30

-50

P(
kN

)

2 Load-displace

5 mm: In this
our "Fig. 3", 
testing our 

curve of Ram
er to plot the 
element, and 7
to handle it w

son of the resu
he other elem
more flexibi
around local 

e elements wi
ut the most i
d less number
ber of iteratio
ergence that t
to undergo th
urve, because 
orrection of 
an not be well
ence α value 
ontrolled disp

ar analysis wh

-10

ement curve (h=

s case the sh
and a very m
results we 

mm [16]. T
curve at "Fig
71 iterations f

with the “Quad
ults obtained 

ments shows th
lity, because
z-axis is natu
ith fictitious r
mportant rem
r of iterations

ons and numer
the shell elem
he unstable b
rotational in

equilibrium b
l controlled. 
must be as l

placement, tha
here accurate 

-2-15

Wc

Wb

Wc

Wb

Wc

Wb

=12.7 mm) 

hell presents 
marked snap-th

refer to the 
The necessary
g. 3" is 46 ite
for “Trian” el
d” element. 
by “Qdrill” e

hat “Qdrill” e
e in this cas
ural, while tha
rigidity like “

mark is that “Q
, compared w
rical difficulti

ments with fic
branch of the
-plane displac
by minimizat

large as poss
at is in contra
results are ob

-250

W

c-Qdrill

b-Qdrill

c-Trian

b-Trian

c-Surana

b-Surana

 

a very 
hrough 
 load-
y total 
erations 
lement, 

element 
element 
se, the 
at’s not 
“Quad” 
Qdrill” 

with the 
ies and 
ctitious 
e load-
cement 
tion of 

ible to 
diction 
btained 

-30

W(mm)



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:7, No:2, 2013

116

 

 

 
Fig. 3 Load-displacement curve (h=6.35 mm) 

2) Dynamic Linear Response 
Second: dynamic linear analysis was carried out for 

E=0.310275 kN/mm2. 
The time history displacement curves result using 8x8 

“Quad” and “Qdrill” elements given in "Fig. 4", and using 
8x8x(2) “Trian” elements given in "Fig. 5", show that a 

considerable attention must accorded to the value of α 
constant to be chosen when fictitious stiffness is adopted. One 
can deduce that there’s a range between 10-2 and 10-5 where 
the solutions are very close, we conclude that α value must be 
chosen among values of this range. From the other side, 
nonlinear analyses obligate the use of the biggest value of the 
fictitious stiffness to unsure numerical stability and to perform 
analyses with the least numerical cost.  

When “Qdrill” element always present a good convergence 
to the solution in [17], It can be seen from "Fig. 6" that a good 
convergence rate was obtained by the two other elements 
using α=10-3. 

3) Dynamic Non Linear Response 
Finally: geometrically non linear dynamic analysis was 

carried out for E = 0.310275 kN/mm2. The deflection time  
history curves obtained using “Qdrill”, “Quad” and “Trian” 
elements given in "Fig. 7", show that an excellent agreement 
with the solution in [17] is obtained using 8x8 quadrilateral 
meshing. The most important factor presented in this study is, 
the iterations number required by each  one of  the  three  shell 

 
Fig. 4 Dynamic response of the cylindrical shell using “Quad” element 
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Fig. 5 Dynamic response of the cylindrical shell using “Trian” element 
 
elements presented herein to perform the example. “Qdrill” 
element performs 522 iterations while “Quad” and “Trian” 
elements perform 625 and 626 iterations respectively to 
complete the whole curve. Then “Qdrill” element is 0.2 time 
less costly. So it’s easy to demonstrate that the solution 

obtained using “Qdrill” element was very faster than those 
obtained by using “Trian” or “Quad” elements. Also the shell 
element “Qdrill” ensure more numerical stability especially 
when large nonlinearity is involved. 

 
Fig. 6 Vertical displacement time history of the cylindrical shell α=10-3 
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Fig. 7 Central point deflection time history of the cylindrical shell 

VII. CONCLUSION 
The Quadrilateral shell element with drilling rotation 

presented for nonlinear dynamic analysis seems to be a 
powerful element to use for geometrically nonlinear dynamic 
analysis by direct time integration. 

As the results illustrated, on the one hand “Qdrill” shell 
element shows a grate stability and less numerical cost in 
critical situations when the structure response involves large 
nonlinear behaviour, on the other hand, “Trian” and ”Quad” 
shell elements with fictitious stiffness present deficiency and 
grater numerical cost. In conclusion, as we can see, the 
interpolation of the in-plane rotational d.o.f has a major 
advantage in shell structures analysis by flat shell elements. 
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