International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:7, 2016

Evaluation of Introductory Programming Course for
Non-Computer Science Majored Students

H. Varol

Abstract—Although students’ interest level in pursuing
Computer Science and related degrees are lower than previous
decade, fundamentals of computers, specifically introductory level
programming courses are either listed as core or elective courses for a
number of non-computer science majors. Universities accommodate
these non-computer science majored students either via creating
separate sections of a class for them or simply offering mixed-body
classroom solutions, in which both computer science and non-
computer science students take the courses together. In this work, we
demonstrated how we handle introductory level programming course
at Sam Houston State University and also provide facts about our
observations on students’ success during the coursework. Moreover,
we provide suggestions and methodologies that are based on
students” major and skills to overcome the deficiencies of mix-body
type of classes.

Keywords—Computer science, non-computer science major,
programming, programming education.

[. INTRODUCTION

OMPUTERS and digital devices are all the rage among
people today, across all ages. Tablets top the youngest
student’s wish lists and high school students would love to
have a laptop computer as well. In professional life, when it
comes to business intelligence, aerospace engineering,
educational technology, etc., computer skills are necessary for
an employee today. Therefore, when earning business,
computer animation, variety of engineering degrees, etc.,
programming courses are now required for these non-
computer science majored students. To accommodate the need
from the other majors, while some computer science units in
the universities offered separate courses for these non-majored
students, most of the units simply increased the number of
sections and/or class sizes and invite non-majored students to
take the course together with computer science students. This
second option has provided some advantages to the
departments and students but also have its drawbacks as well.
Creating mix-student body classes has helped computer
science departments to attract more students that changed their
major from something else to computer related degrees [1].
We have seen that with the increased interaction between
computer science students and positive results of modified
content of the course to accommodate the need of all majors
teared down the myth of computer science being a hard major
[1]. From the administrative perspective, creating these mix-
body classes created more freedom, i.e. in terms of
date/time/instructor, for the students when choosing the course

H. Varol is with the Sam Houston State University, Huntsville, TX 77341
USA (phone: 936-294-1075; e-mail: hxv002@shsu.edu).

to be taken. From instructors’ point of view, instead of
preparing for two totally different classes, with this mixed-
body environment, they were able to create set of documents
that addresses the needs of all students no matter what the
major is.

In contrast to all the advantages of hybrid type of class, this
approach also brought some concerns to the table. For
instance, while instructors were using unified course materials
to all students, creating an appropriate level of course work
that will address the needs for both computer science and non-
computer science students has been a challenge [2].
Specifically, some computer science students have felt the
level of the coursework is easier than they hoped for, while
still quite a number of non-majored students struggled with the
materials.

Based on the observations, there is a dire need to reflect the
success rates of computer science and other non-majored
students in the first programming course in a mixed-classroom
environment. Secondly, we need to provide suggestions and
solutions to the existing problems.

The rest of the paper is organized as follows. Section II
provides related literature work on programming courses and
observations on both majored and non-majored students.
Section III provides information about the course model that
we have been employing at Sam Houston State University.
Observations and discussions on the results are shared in
Section IV. At the end, the paper is finalized with conclusion
section.

1I. BACKGROUND

Traditional computer science courses, especially first
programming courses have had little success to attract and also
increase the success rate of non-computer science majored
students. Bennedsen and Caspersen studied the potential
indicators of success in programming course and found out
that math grade from high school and college level math
course work are significant indicators to test whether a student
can be successful [3].

Wiedenbeck analyzed the factors affecting the success of
non-computer science majored students in programming
course. The author found that perceived self-efficacy
increased significantly during the course. Both perceived self-
efficacy and knowledge organization directly affected the
course grade, and specific programming tasks, such as
debugging. The results on self-efficacy also showed the author
that the participants were overconfident about their
programming capabilities [4].

McCracken et al. investigated programming competency

2278

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:7, 2016

after the students completed their first and second
programming courses in computer science [5]. They have
created a framework to be used and several universities
participated in the assessment. For a combined sample of 216
students from four universities, they have obtained an average
score of 22.89 out of 110 points. The authors have found that
the problems were to be independent of country and
educational system. They also observed that the most difficult
part for students was abstracting the problem to be solved
from the exercise description.

To increase the success rate in first programming course
and promote the field, a number of approaches have been used
from pair programming [6], [7], to creating a friendly
environment by introducing virtual human helpers [8], [9]. All
those and additional measures are also introduced in number
of studies [10]-[12]. Besides these, constructivism, which
takes a tight control on the mental model construction process
in the weak students, and allows the students to navigate
through many conceptual pitfalls in programming
fundamentals, were used by [13]. The six guidelines that they
have used on weak students increased the success of these
students in their first C language programming course.
Overall, all these studies, in general provided a good
foundation to increase the success in the field, but still they
lack the facts about different majored students’ success rate in
the course.

At Georgia Institute of Technology, two tailored
introductory courses were introduced as an alternative to the
traditional mix-body course [14]. According to the authors,
more non-majors succeeded in these tailored courses than in
the traditional mix-body course; less negative reactions
received about the course content and this approach increased
the interest in taking another tailored computer science course.
However, as discussed in the previous section, not all
universities created separate courses for different student
bodies.

Guzdial and Forte proposed a design process for non-
majored computing course. In their design process, first they
set the objectives based on ACM recommendation and
computer science education research literature. Second, they
selected a context that allowed them to meet the objectives
and motivate the non-majored students. Third, they set up
feedback process from faculty and students. As the last step,
they defined the infrastructure (choosing the programming
language to be used) and the course. Overall, the authors
achieved 90% of success rate defined as earning C or better
from the course [15]. While this approach is promising, their
work is focused on only non-majored students while
discarding the expectations from the computer science
students.

III. COURSE MODEL AND METHODOLOGY

Each year at Sam Houston State University multiple
sections of Programming I course are offered in Fall and
Spring semesters. Roughly, around 40% of the students are
majored in computer science, while rest of them are majored
in the other areas. Students belong to College of Sciences

(COS), College of Business Administration (COB), College of
Social Sciences and Humanities (CSSH), and College of
Criminal Justice (COCJ), can take Programming I as a core or
an elective course based on their degrees’ curriculum.
Specifically, we see science students from Physics, Math,
Computer Animation, Electrical and Computer Engineering
Technology, Forensic Chemistry, Geography, and Geology,
business students from Management Information Systems
(MIS) and Finance, social science students from History,
Applied Arts, Health Sciences, Kinesiology, and
Interdisciplinary Studies. Also, there are some general studies
students who have either not selected any major yet or failed
to have a certain grade point average to be a part of degree
plan.

A. Course Logistics

This course teaches Java programming language to all non-
majored and majored students. Every semester, five to seven
sections of the course are offered to these students while two
to four instructors are assigned to those classes. PowerPoint
slides, theory work on white board, tutoring videos, and hands
on examples are part of the course module. Exams, multiple
assignments, and weekly laboratory work are the core of
grading items. Course materials are same for every section.
These course materials, including hands on examples,
laboratory tasks, and assignment materials are created in a
way that will consist of questions based on simple
mathematics, geometry, finance, business, and social sciences.
Class sizes in Programming I are limited to 20 students. The
laboratory is supervised with a teaching assistant with a
support of (helper) two qualified graduate students.

B. Participants in This Study

The participants in this study were 107 non-computer
science majored students. Although most of our discussions
will be based on non-computer science students, we will make
occasional comparisons with computer science majored ones
which we had obtained grades for 31 of them. Most of the
participants were majored in Mathematics (26%), followed by
Physics at 14%. Other than couple of MIS students, the rest of
them indicated that they had no prior programming experience
in the first class of the semester.

In this study, the results were obtained from multiple
instructors’ courses in one-year period of time.

C.Obtained Results

Fig. 1 reflects the grade point averages (GPA) for different
colleges based on a scale of 4.0. As shown in the figure,
overall GPAs are close to each other among colleges, while
CSSH has the lowest GPA. This is not a surprising result
based on CSSH curriculum and non-math student profile.
However, we also need to notify that computer science
students grades are part of the COS GPA. Without Computer
Science students, the GPA of COS would drop to 2.56, the
lowest among all colleges, which is a concern that needs to be
addressed.

As shown in Fig. 2, Computer Science, Computer
Animation, and Geography student groups are all fared well

2279

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:7, 2016

and had scored an average of 3.0 in Programming I course.
However, Forensic Chemistry, Geology, and especially
Physics majored students, who are part of the COS, have
struggled from the course.

Average GPA

32

2,8
” l []
2,4

CSSH coc)

W Average GPA

Fig. 1 Grade Point Averages Based on College

Average GPA of COS Students

& i 5 &
oM > £ < X o~ A
«¥ T &Y ol & & &
5 N & &
& A ¢ e
> & Y o°
S & [y
Q 06\ 2T (O

m Average GPA of COS Students

Fig. 2 Grade Point Averages of College of Science Students

When we look at Fig. 3, for all other notable majored
students’ GPA, except History, Health Sciences, and
especially General Studies students, the rest of the majors
scored acceptable GPA (2.5+) in average.

IV. OBSERVATIONS AND DISCUSSION

Majors not belonging to College of Sciences performed
similar to those students. This indicates that the course
materials were generic enough so that the understanding level
of the students in one college were in the same level with the
students from another college, which reflects the success of
the unified course design we had implemented for
Programming I course. Moreover, it is a known fact that the
well-prepared related teaching materials are directly
associated with retention [16]. For this reason, the laboratory
materials and assignments were prepared to contain great
detail of the given task. This also contributed to this successful
outcome. However, for those students either have not decided

on the major that they want to follow, or failed to success a
particular major; thus, dropped to a general studies student
level, were the ones struggled from the course.

Other Notable Average GPA for Non-COS

Students

35

3

2,5

2

1,5

1

O,g -

5 S 5 o

\0 (\(’Q’ (_}-\L é\\ 0%\ @Q‘ \’“@ 6\?’
S KA W X < > <
RANPTOEN & O)
N SN P
N N + & Y &

& & & S

by &G % o

B Other Notable Average GPA for Non-COS Students

Fig. 3 Other Notable Average Grade Point Averages for Non-College
of Sciences Students

Out of all College of Science students, Physics and Forensic
Chemistry students were the ones who struggled from the
course. This can be correlated to the school year of the
students. Specifically, while most of the participants from
these two majors were sophomores, more senior level
participants took the class from Mathematics, Geography, etc.
Another reason we observed to contribute to this result was
the type of questions that the students received. As mentioned
earlier, during laboratory times and hands-on experience
majority of the questions required basic computing, algebra,
statistics, finance, business intelligence, and/or geometry
knowledge to solve them. Physics majored students struggled
to answer these type of questions. The main reason for that
was the lack of understanding the concept before creating the
algorithm to solve it. If these materials would contain some
physics and forensic chemistry related materials, then we
would see higher scores in these events.

Arguably, one of the most challenging issue of teaching
programming course to a mixed-body classes is while
Computer Science majored students easily understand the
class materials, non-majored students struggle to learn. Since
many Computer Science majored students have
knowledge/experience about programming, they get the class
topics quickly and ask questions to consolidate or even learn
more about the material. However, most of the non-majored
students do not have any programming experience. Therefore,
while conducting hands on examples with classroom, the
instructor has to explain way(s) to solve that particular
problem step by step for non-majored students. In the
meantime, since most of the Computer Science majored
students were able to implement their codes, they were
starting to get bored and even started to disturb the classroom
environment. Therefore, in order to not to lose Computer
Science students’ interest throughout the class time, the

2280

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:7, 2016

instructors asked them to enhance the given examples via
algorithm changes or extending it with additional capabilities.
This tremendously helped to have a focused environment in
the classroom.

Keeping the students engaged in the classroom is one of the
most important aspects in learning. Creating a question/answer
type of a class environment is proved to be an effective way of
teaching. However, when you have mixed-body type classes,
some negative aspects may occur in this type of education. For
instance, when a question is asked to the students, most likely
the answer will be given immediately by one of them who can
get the materials easily or have prior knowledge about the
topic, while others need some time to think over. This results
in discouragement on the students who has slim knowledge on
the concept/question. Eventually, these students start to avoid
finding answers in the following questions. In order to keep
those students motivated, it is needed to ask the questions
gradually from easy to challenging. Moreover, we observed
that picking a name from the class roster to answer these
basic/easy questions and providing hints to the student while
finding the correct answers for these questions helped to
increase the attention and success rate in the course.

V.CONCLUSION

In this work, we have demonstrated the performances of
different majored students in Programming I course at Sam
Houston State University. Our main goal from this work was
to demonstrate that the success level of non-majored students
was similar to that of the Computer Science students. We have
seen that modified course content to address the need for all
students taking the course resulted as a success story. Besides,
the changes on the course content, we strongly think having
multiple mentors in the laboratories to help, creating
collaborative learning environment in which students can
reach these mentors throughout the course for exam and
assignment preparation also helped us to improve the success
rate of non-majored students.

As a future work, we will enhance the course materials
related with struggling students’ major’s content. Moreover, as
an extension of this work, we would like to create a pair-
programming environment, in which a computer science
student is matched with a non-majored student for
assignments.

REFERENCES

[1] H. Varol and C. Varol, “Improving Female Student Retention in
Computer Science during the First Programming Course”, International
Journal of Information and Education Technology, Volume 4, Issue 5,
pp. 394-398, October 2014, DOI:10.7763/IJIET.2014.V4.437.

[2] M. Urban-Lurain and D. J. Weinshank, “Do non-computer science
students need to program?”, Journal of Engineering Education, 90 (4),
pp. 535--541, 2001.

[3] J. Bennedsen and M Caspersen, “An investigation of potential success
factors for an introductory model-driven programming course”.
Association of Computing Machinery, Proceedings of the 2005
International Workshop on Computing Education Research (ICER ’05),
pp. 155-163, 2005.

[4] S. Wiedenbeck, “ Factors affecting the success of non-majors in learning
to program”, 1% International workshop on Computing Education
Research, pp. 13-24, 2005.

[5] W. M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.
D. Kolikant, C. Laxer, L. Thomas, I. Utting and T. Wilusz, “A multi-
national, multi-institutional study of assessment of programming skills
of first-year CS students”, ACM SIGCSE Bulletin, 33(4), pp. 125-140,
2001.

[6] C. McDowell, L. Werner, H.F. Bullock, and J. Fernald, “Pair
Programming Improves Student Retention, Confidence, and Program
Quality”, Communications of the ACM, Vol. 49, No. 8, pp. 90-95, 2006.

[71 B. Bowling, H. Bullen, M. Doyle, and J. Filaseta, “Retention of STEM
Majors Using Early Undergraduate Research Experiences”, Proceedings
of the 44th ACM Technical Symposium on Computer Science Education,
Denver, USA, March 6-9 2013, pp. 171-176.

[8] C. Arrington, D. M. Wilson, and L. Lehmann, “Improving Performance
and Retention in Computer Science Courses Using a Virtual Game
Show”, Proceedings of the 49" Annual Southeast Regional Conference,
Kennesaw, GA, March 24-26 2011, pp. 320-321.

[9] S. L. Finkelstein, E. Powell, A. Hicks, K. Doran, S. R. Charugulla, and
T. Barnes, “SNAG: Using Social Networking Games to Increase Student
Retention in Computer Science”, Proceedings of the Fifteenth Annual
Conference on Innovation and Technology in Computer Science
Education (ITICSE 2010), Ankara, Turkey, June 26-30 2010, pp. 142-
146.

[10] L. MacLean, ‘“Recruitment and Retention of Women in Computer
Science and Information Systems: How and Why”, 2nd International
Conference on Education and New Learning Technologies, Barcelona,
Spain, July 5-7 2010, pp. 1585-1591.

[11] J. Peckham, P. D. Stephenson, J. Y. Hervé, R. Hutt, and L. M.
Encarnagdo, “Increasing Student Retention in Computer Science
Through Research Programs for Undergraduates”, Proceedings of The
38th SIGCSE Technical Symposium on Computer Science Education,
Covington, Kentucky, USA March 7-10 2007, pp. 124-128.

[12] R. M. Powell, C. Murphy, A. Cannon, J. Gordon, and A. Ramachandran,
“Emerging Scholars Program- a PLTL-CS Program that Increases
Recruitment and Retention of Women in the Major, University of
Pennsylvania Department of Computer and Information Science
Technical Report No. MS-CIS-12-16. January 2012.

[13] K. A. Lui, R. Kwan, M. Poon, and Y. H. Y. Cheung, “Saving Weak
Programming Students: Applying Constructivism in a First
Programming Course”, SIGCSE Bulletin 36(2) pp.72-76, 2004.

[14] A Forte, and M. Guzdial, “Motivation and Non-Majors in Computer
Science: Identifying Discrete Audiences for Introductory Courses”, In
IEEE Transactions on Education, 48 (2) pp. 248-253, 2005.

[15] M. Guzdial and A Forte, “Design process for a non-majors computing
course”, Proceedings of the 36th SIGCSE technical symposium on
Computer science education, pp. 361-365, 2005.

[16] L. Barker, C. McDowell, and K. Kalahar, “Exploring Factors that
Influence Computer Science Introductory Course Students to Persist in
the Major” SIGCSE Bulletin, v.41, n.2, 2009. pp.282-286.

Hacer Varol received his Bachelor of Science degree in
Electrical and Electronics Engineering from Firat
University, Elazig, Turkey in 2003, Master of Science
degree from Applied Science from University of Arkansas
at Little Rock, Little Rock, AR, USA in 2011, and currently
pursuing doctorate degree in Electrical Engineering from
Lamar University, Beaumont, TX, USA. She has been
working as Lecturer at the Department Computer Science at
Sam Houston State University, since 2011. Her research
interests are space network communications, computer science education,
educational technology, and biomedical signal processing.

2281

