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Abstract—Settlement and bearing capacity of a piled raft are the 

two important issues for the foundations of structures built on coastal 
areas from the geotechnical engineering point of view. Strip piled raft 
as a load carrying system can reduce the possible extensive 
consolidation settlements and improve bearing capacity of structures 
in soft ground. The aim of this research was to evaluate the efficiency 
of strip piled raft embedded in soft clay. The efficiency of bearing 
capacity of strip piled raft foundation has been evaluated numerically 
in two cases; in the first case, the cap is placed directly on the ground 
surface and in the second, the cap is placed above the ground. 
Regarding to the fact that the geotechnical parameters of the soft clay 
are considered at low level, low bearing capacity is expected. The 
length, diameter and axe-to-axe distance of piles were the parameters 
which varied in this study to find out how they affected the bearing 
capacity. Results indicate that increasing the length and the diameter 
of the piles increase the bearing capacity. 

 
Keywords—Soft clay, Strip piled raft, Bearing capacity, 

Settlement. 

I. INTRODUCTION 
TRIP piled raft foundation is combination of both raft and 
piles and is known as a pile-enhanced raft or piled raft. An 

increasing number of the structures are constructed on soft 
ground causes the application of piled raft on soft ground 
increased. Piled raft foundations provide an economical 
foundation option for circumstances where the performance of 
the raft alone does not satisfy the design requirements [1]. 
Many studies on design piled-raft have been carried by 
researchers all over the world [2]-[8]. The design of piled-raft 
system basically involves examining of bearing capacity of 
supporting sub-soil and the permissible allowable total and 
differential settlements. Due to low bearing capacity and 
excessive settlement in coastal areas, use of piled raft is 
essential [9], [10]. Unfortunately, a few analytical methods 
have been developed for analysis of a piled raft on soft clay 
[11]. Evaluation of bearing capacity for strip piled raft is 
considered in two cases: (A) there is connection between raft 
and soil, thus soil contributed in load transfer, and (B) there is 
no connection between cap and soil and cap is located in 
determined level from soil, in this case because of gap, all of 
applied load carried by piles, therefore this paper summarizes 
using strip piled raft in two cases: (A) without gap (B) with 
one meter gap. In the case A (without gap) the behavior of a 
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piled raft is affected by interaction between the soil and pile, 
and in the case B (with gap) the interaction between the soil, 
piles and raft is considered. Some methods of analyzing piled 
rafts have been developed and three of them have been 
reported by Poluos [1]. Three classes of analysis method have 
been declared: 
– simplified calculation methods 
– approximate computer-based method 
– more rigorous computer. 

II. DESIGN CONCEPTS 
Randolph [12] has defined clearly three different design 

philosophies with respect to piled rafts:  
The “conventional approach”, in which the piles are 

designed as a group to carry the major part of the load, while 
making some allowance for the contribution of the raft, 
primarily to ultimate load capacity.  

“Creep piling” in which the piles are designed to operate at 
a working load at which significant creep starts to occur, 
typically 70-80% of the ultimate load capacity. Sufficient piles 
are included to reduce the net contact pressure between the 
raft and the soil to below the preconsolidation pressure of the 
soil. 

 Fig. 1 conceptually illustrates the load-settlement behavior 
of piled rafts designed according to the first two strategies. 
Curve 0 shows the behavior of the raft alone, which in this 
case it settles excessively at the design load. Curve 1 
represents the conventional design philosophy, for which the 
behavior of the pile-raft system is governed by the pile group 
behavior, and which may be largely linear at the design load 
[1]. In this case, the piles take the great majority of the load. 
 

 
Fig. 1 Load settlement curves for piled rafts [1] 
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a function of its component capacities, which can be simply 
evaluated by the conventional bearing capacity theories. A 
broad parametric study is carried out using 3D FEM analysis 
to define the failure load coefficients accounting for the 
interaction between the raft and the pile group at failure. Also 
a guideline has been given to assess the factor of safety of 
vertically loaded piled raft. 

Novak L. J. et al. [18] carried out analysis of pile-raft 
foundations with 3D finite-element method .They found 
following reasons for use of the 3D Finite Element Method 
(FEM): (1) the problem is so complex that simplified methods 
cannot model the problem correctly; and (2) codes for the 
FEM are available, powerful, and capable of being run on the 
personal computer.  

Lee J. H.et al. [19] has conducted series of 3D elasto-plastic 
finite element analyses to investigate the bearing behavior of a 
square piled raft subjected to vertical loading. In this study, 
the main characteristic of these analyses was to permit soil slip 
at the pile–soil interface. Pile positions, pile number, pile 
length and loading distributions on the raft were varied, and 
the effects of pile–soil slip, pile geometries and loading types 
were examined. Furthermore, the proportion of load sharing of 
the raft and piles at the ultimate state and the relationship 
between the settlement and overall factor of safety was 
evaluated. The results show that the use of a limited number of 

Piles, strategically located, might improve both bearing 
capacity and the settlement performance of the raft. 
Furthermore, the proportion of load sharing of the raft and 
piles at the ultimate state and the relationship between the 
settlement and overall factor of safety was evaluated. The 
results show that the use of a limited number of piles, 
strategically located, might improve both bearing capacity and 
the settlement performance of the raft. 

Reul O. et al. [20] carried out comparisons of in-situ 
measurements and numerical analyses for three piled raft 
foundations on over-consolidated clay between overall 
settlement, differential settlement and load carried by piles by 
back analysis. Three main performance indicators of the piled 
raft were proposed: the proportion of load carried by the piles, 
and the maximum settlement and maximum differential 
settlement, both as a proportion of the corresponding quantity 
for an unpiled raft foundation. The last indicator suggests that 
improved layout of the pile support can lead to a reduction 
both in the maximum differential settlement and in the overall 
quantity of piles. Numbers of numerical analyses on piled rafts 
were performed for different pile lengths and different 
horizontal distances for piles. 

In this research three types of distance was assumed for the 
axe-to-axe distance and for each axially distance three types of 
length was supposed for piles. Three types of value for axe-to-
axe distance are 5m, 15m and 20m. Also three types of length 
for piles are respectively 30m, 40m, and 50m. The thickness 
of cap and diameter of piles kept constant. The thickness of 
cap and the diameter of piles considered 0.5m and 1m, 
respectively. 

IV.  RESULT 
Figs. 3 and 4 show the effect of different pile length on the 

bearing capacity and load-settlement behavior in two cases: 
(A) with one meter gap and (B) without gap. As expected, 
both bearing capacity and settlement at failure load increased 
with increasing pile length. Also the settlement increased with 
increasing the load magnitude and settlement decreased by 
increasing the length of piles. In the case of without gap, 
results declared a great increase in the amount of bearing 
capacity rather than with gap. It is reasonable, because in the 
case of without gap, both cap and soil contribute in load 
transfer mechanism, while in the case of with gap the entire 
applied load carried by piles. 

In both cases, if the applied load was constant, by 
increasing the length of piles the settlement decreased. As 
shown in the Figs. 3 and 4, in the case of with gap the length 
of pile is more effective than the case of without gap. It means 
in the case of with gap by increasing the length of pile( for 
example from 30m to 40m) the ratio of increasing ultimate 
load is more than the case of without gap, thus it is clear that 
increasing the length of pile, in the case of with gap, is more 
effective design strategy for improving foundation 
performance.  
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