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Abstract— A sequential decision problem, based on the task of
identifying the species of trees given acoustic echo data collected
from them, is considered with well-known stochastic classifiers,
including single and mixture Gaussian models. Echoes are processed
with a preprocessing stage based on a model of mammalian cochlear
filtering, using a new discrete low-pass filter characteristic. Stopping
time performance of the sequential decision process is evaluated and
compared. It is observed that the new low pass filter processing
results in faster sequential decisions.

Keywords— Classification, neuro-spike coding, parametric
model, Gaussian mixture with EM algorithm, sequential decision.

I. INTRODUCTION

HEN navigating in their natural habitat, the landmarks
available to most bats are trees. The echolocation
performed by bats is well established in theory.

However, it remains a problematic area how to encode the
received echoes for landmark recognition [1,2]. Estimation of
an accurate statistical model for the classes to be discriminated
imposes further difficulties.

In most cases, the statistical models do not provide
optimality. In such cases, decision-making or classification
employing dynamic programming for the posteriori
probabilities of Sequential Ratio Probability Test, SPRT, [3,4]
can be adopted. However, in multivariate modeling, error or
discrimination surfaces are difficult or impossible to
determine. As a practical approach, a safe decision-threshold
probability can be chosen and relevant stopping times can be
estimated.

In this study, we examine sequential decision processes that
classify echo sources based on single and mixture Gaussian
models of the conditional likelihood distribution of a neuro-
spike code representation of plant echoes as a random process
[5]. The feature extraction is based on summary statistics of
the inter-spike time differences at a number of threshold levels.
In the preprocessing stage, we applied a different low-pass
filter structure from [5], such that class feature statistics
become more clearly separated with respect to each other.
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Sequential classification performances are observed to
improve substantially.

II. BIOLOGICAL SIGNAL PROCESSING FOR ECHOES, FEATURE

EXTRACTION AND PROPOSED PREPROCESSING SCHEME

The echo preprocessing operation consists of two stages:
cochlear filtering and coding [5]. In the first stage, the
waveform is passed through a fourth order gammatone filter
with center frequency fc and –3 dB quality factor Q-3dB for
modeling cochlear filters. This stage is followed by envelope
extraction performed as half-wave rectification and low-pass
filtering (LPF) with
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where fs is the sampling rate.
The LPF output is then normalized and searched for first-

crossings of a number of thresholds to model spike generation.
Müller [5] showed that successive inter-spike time intervals at
threshold levels αm and αm+1 with the condition

cmm f/.),( 511 ≥≥≥≥++++αα∆ constitute sufficient statistics for
classifying a given echo source. He defined echo feature
vectors as 3-tuples comprising
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where I[.] is an indicator function giving 1 when the condition
is met otherwise 0.

In this study, we tested two alternative LPF structures. Since
the LPF given by (1) introduces varying nonlinear phase
response and hence group delay across the frequency range
used, features extracted will deviate from the real quantities. A
single-pole architecture is also prone to unstable operation i.e.,
unbounded impulse response. In order to remedy these
shortcomings, we propose a discrete-time LPF given by
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The main characteristic of this filter is that it has an almost
constant phase response and hence identical group delay.
Impulse response will be more bounded compared to the
previous design.

III. DENSITY ESTIMATION MODELS

In classification, the objective is to decide the class label
which best represents the data, x, hence a minimum error

probability, Pe amongst M different classes, Ck, which results
in the Bayesian decision rule [6]

)|( xCPk i
i

argmax==== (4)

From Bayes’ rule, the above posterior probability can be
expressed in terms of likelihood densities, or conditional
probability density functions (pdf) p(x|Ck) and a priori
probabilities P(Ck) as
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The classification process therefore depends critically on the
representations of the likelihood functions p(x|Ck). These can
be non-parametric or parametrical; in this study we use only
parametric representations.

In sequential decision processes, the class label, e.g., k, is
determined with the earliest time stamp NTH which gives rise
to a posterior probability above a specific decision-threshold
value PTH [3,4]. This can be written
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where NTH is the class k stopping time for a threshold

probability and )|()(
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j
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posteriori probability for class Ck at sample xj can be obtained
iteratively using
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as each successive data item (echo) is received.
There are two possible sources of error in this process. First,

the asymptotic value of the posterior probability may not
exceed the threshold for any class, so NTH is infinite. Second,

the decision-threshold may be exceeded first for an incorrect
class. In both cases, the error is due to imperfections in the
representations of the class-conditional likelihoods.

Two parametric models for these class-conditional density
functions are studied: single Gaussian and Gaussian Mixture.

A. Single Gaussian.

A single (multi-variate) Gaussian density profile is given by
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where d is the feature vector dimension. Model parameters
mean, (µ), and covariance matrix, (Σ), are estimated by using
training set as
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B. Gaussian Mixture

Each class-conditional pdf is expressed as a linear
composition of Mk component Gaussian pdfs as
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subclasses, Mk, can be determined by using Akaike’s
Information Criterion [7], or Rissanen’s Minimum Description
Length [8], for instance.

Parameters can be optimized in the maximum likelihood
sense by using the expectation-maximization (EM) algorithm
[9] iteratively until the likelihood function reaches a local
minimum or a predefined number of iterations have been used.
EM description of the i-th component conditional model
parameters at the (j+1)-th iteration with βi=P(ci|Ck), as
follows:
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IV. EXPERIMENTS AND RESULTS

In experiments, we employed 2100 echoes for each of four
tree types (acer, carpinus, platanus and tilia) from Müller’s
database of 85000 echoes. The transmitted signal was a
frequency-modulated chirp sweeping linearly from 120 kHz
down to 20 kHz in 3 ms. Tree hedges were scanned by two
receivers in three dimensions at an almost perpendicular angle
and echoes were sampled at fs=1MHz.

The filterbank consists of a single-channel with a band-pass
filter of parameters fc=50 kHz and Q-3dB=10. Classifier
performances are assessed versus the LPF time constant
parameter (and the number of chosen components for the
mixture models).

First order statistics, sample mean, over a randomly chosen
500 feature vectors for each tree with the proposed new LPF
are graphed in an accompanying paper [10].

Based on the above feature definitions, single and Gaussian
Mixture models were constructed and employed as sequential
decision classifiers with PTH=0.99. The Gaussian Mixture
model is implemented with EM carried out for (maximum)
1000 iterations. Each classifier’s performance is evaluated
with the leave-one-out cross-validation technique [11] with
2100 features by using 10 subgroups for each tree. Those 10
distinct sample average results of stopping times are processed
with boot-strapping to obtain a final classification performance
within a given 95% confidence interval. The results are shown
in Fig. 2-4 where the average proportion of each class
correctly classified is plotted against the LPF time-constant.
From the results, it is found that optimum component numbers
with the EM mixture model for acer, carpinus, platanus and
tilia are 2, 4, 4 and 2 respectively.

For the Gaussian Mixture model with EM algorithm, the
components are initialized by using K-Means algorithm, [12].
Component model parameters, such as the mean and
covariance matrix, can be computed by using maximum
likelihood method similar to a single-Gaussian model. The
initial component probabilities, P(ci|Ck), are given by relative
distribution of subclass members.

Since stopping time is a random variable, it will be more
convenient to express it as a marginal density, e.g., a
histogram. For this purpose, a set of experiments carried out
with parameters ψ=τ and ψ=(τ, Mk) for single- and Gaussian
Mixture models, respectively, with 1000 randomly chosen test
vectors and 1000 training feature vectors. Each experiment is
repeated 100 times, yielding a new random variable
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Fig. 4 illustrates the histograms of NTH with two LPFs
considered.

(a)

(b)

Fig.2. Single-Gaussian sequential classifier performances designed using
(a) LPF in (1), and (b) LPF in (3), with 95% confidence interval.

Fig.3. Gaussian mixture model with EM sequential classifier performance
designed using LPF in (3) for different component numbers with 95%
confidence interval.
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(a)

(b)

Fig.4. Single and EM-mixture Gaussian models stopping time distributions
using (a) LPF in (3), (b) LPF in (1).

The sequential decision classifiers designed with new LPF
operate with smaller mean and variance or confidence interval
for the chosen PTH=0.99. Table I summarizes some of the
characteristics for each classifier model with LPFs considered
where E and δ95 denote the estimated ensemble average and
95% confidence interval, respectively.

TABLE I
STATISTICAL QUANTITIES WITH LPF

Tree Single Gaussian, E/δ95 Mixture Models, E/δ95

LPF (3) LPF (1) LPF (3) LPF (1)

Acer 2.7/1.8 4.0/7.6 2.2/2.3 3.9/9.7
Carpinus 2.4/2.5 7.7/7.8 2.3/2.6 7.0/11.8
Platanus 1.7/1.7 2.8/6.9 1.7/1.7 2.6/9.5
Tilia 1.6/2.4 5.6/6.8 1.4/1.9 7.3/7.2

The improvement in sequential classifier performance can be
accounted for by the almost constant phase characteristics of
the filter, as explained before, while magnitudes are similar for
both structures. It should be noted that, since τ>>1/fs, both
filters operate in the asymptotical region and filter constants
should be high precision.

V. CONCLUSION

Probabilistic classifier models are examined for classifying
various plant echoes with labeled data in sequential decision.
For improving the feature first-order statistics separation
further, a new LPF structure is proposed. Classifier
performances are presented and compared to the model
presented in [5] by Müller who used kernel estimated class-

conditional likelihood models based on the full database of
echo data.

Our results show that excellent classification performance
can be obtained using parametric likelihood models (which are
more easily learned than the kernel estimated models) and that
the novel LPF structure improves the efficiency of
classification substantially.
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