
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1255

Abstract—Determining how many virtual machines a Linux host

could run can be a challenge. One of tough missions is to find the
balance among performance, density and usability. Now KVM
hypervisor has become the most popular open source full
virtualization solution. It supports several ways of running guests with
more memory than host really has. Due to large differences between
minimum and maximum guest memory requirements, this paper
presents initial results on same-page merging, ballooning and live
migration techniques that aims at optimum memory usage on
KVM-based cloud platform. Given the design of initial experiments,
the results data is worth reference for system administrators. The
results from these experiments concluded that each method offers
different reliability tradeoff.

Keywords—Kernel-based Virtual Machine, Overcommit,
Virtualization.

I. INTRODUCTION
LTHOUGH virtualization brings flexibility to OS
arrangement, the continual need to balance physical

resources to workload demand that makes capacity planning
more important. One of the biggest challenges about resource
overcommit [1] is the potential performance decrease within
guests or hosts.

However, the on-line memory consumption of a system is
largely application-dependent. The challenge of driving higher
system utilization by consolidating workloads is managing the
complexity of the consolidation. Generally speaking, Linux
user guide would suggest that swapping is supposed to be the
last resort. Technologies such as Kernel Same-page Merging
(KSM) [2] and memory ballooning [3] are different ways to
maneuver memory overcommit. Both same-page sharing and
ballooning outperform swapping.

In this paper we have arranged three different scenarios to
utilize guest’s memory. The experiments in this paper were to
explore the current approaches to memory management in
cloud platform. In the last section, we discussed the effect and
affect of present initial results.

II. FUNDAMENTAL

A. Server Virtualization
Most of virtualization projects are focusing on server

consolidation [4]. That is because server consolidation brings
impressive financial benefits (e.g., reduction of maintenance
costs, power consumption savings and floor space savings).

C. H. Li is with the National Center for High-Performance Computing,

Tainan 74147 Taiwan (phone: +886-6-505-0940; fax: +886-6-505-5909;
e-mail: OscarLi@nchc.narl.org.tw).

Although there are many good reasons to create a virtual
infrastructure, the degree of savings depends on the
configuration to overcommit host resources, such as CPU,
memory, disk and network bandwidth. Many best practice
guides [5] suggest, for example, using sparsely disk image files
for overcommitting storage, preparing enough host swap space
for overcommitting memory, etc.

As of this writing, Linux KVM hypervisor shows efficiently
processor resource sharing [6] among guests. However,
memory overcommitment is still a challenge for virtual
machine rental service providers who deployed KVM. Unlike a
regular process, each virtual machine runs an operating system
on it. Thus virtual machine has greater chance requesting more
memory rather than an application.

B. KVM Hypervisor
KVM stands for Kernel-based Virtual Machine [7] which

means a full virtualization solution. KVM is for Linux which is
working on processors that have capabilities related to
virtualization. KVM virtual machine implementation has two
loadable kernel modules. One is “kvm.ko” that handles the
main virtualization function and another is the processor
specific module, “kvm_intel.ko” or “kvm_amd.ko”. In addition,
it also needs a modified QEMU to emulate all peripherals for
virtual machines.

The philosophy of KVM designation is re-use the original
Linux source code as much as possible. Therefore, KVM brings
a very light-weight integration and driver compatibility. Now it
has become a very popular cloud hosting solution. Fig. 1
presents the components of a typical KVM installation. As you
can see that each KVM VM can be treated as a user space
process in Linux, all the memory optimization settings apply.

Fig. 1 Linux KVM architecture

C. Memory Ballooning
The simplest way to define the total free memory one KVM

guest can use is to allocate fix size amount in template file. But
fix memory allotment for VMs is not an efficient way to use
limited memory. When the host is running low on memory but

Chin-Hung Li

Evaluating the Effectiveness of Memory Overcommit
Techniques on KVM-based Hosting Platform

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1256

VM is not running out its memory, there should be a better way
for host to allocate unused memory of guests.

Ballooning technique is about memory reclamation of a
virtual machine as if it had been configured with less memory.
When host needs extra free memory, its hypervisor will send a
request to the guest OS to return some memory back to the
underlying host. With this technique, the system administrator
can instruct the target VM to release some of its memory so that
it can be used for other purpose.

Ballooning essentially is a cooperative operation between the
guest driver and the hypervisor. KVM ballooning is achieved
via one of para-virtualized device driver (virtio_balloon). As
shown in Fig. 2, it depicts how ballooning works. The size of
guest’s balloon part memory is controlled by the virtio_balloon
driver. These pinned memory pages will no longer available to
guest but only host can reclaim it then. Once balloon memory
becomes available again, the hypervisor will return memory
and instruct its guest OS to deflate the balloon part. Finally
relinquish the guest memory pressure.

Fig. 2 Memory ballooning concept

D. Kernel Same-page merging
Kernel Same-page Merging (KSM) is a new Linux kernel

feature [8]. Essentially, Linux KSM is sort of virtual memory
de-duplication. This concept is represented on Fig. 3. KSM is
initiated by host ksmd service which looks for host pages that
contain identical content. When KSM finds identical pages,
those pages will be marked sharable and merged as read-only.
If later a process requests to modify one of these pages from
registered memory, KSM will create a copy-on-write page.

Since bit-by-bit memory pages comparison is a
CPU-intensive task. Memory scanning frequency need to meet
the workload demand, otherwise it will result in high CPU load.

According to Linux kernel documents, a high ratio of
pages_sharing to pages_shared indicates good effectiveness. If
mission is running VMs as more as possible, keep ksmd and
ksmtuned services up and running is a way to save memory.
Despite its advantages, KSM has page size restriction.
However, for systems that run the same applications on a lot of
homogeneous guests, KSM is theoretically helpful for memory
saving.

Fig. 3 KSM concept

E. Live Migration
An easy way to system load balancing is to move out some

processes to another host. Generally speaking, migration would
be considered a preferable way to leverage whole system’s
workload. Technical glitches are bound to happen in a server
room. Services go down all the time. Migration can help those
system administrators to avoid the down time of their critical
services. Fig. 4 illustrates the basic architecture ready for VM
live migration.

Fig. 4 Scenario of virtual machine live migration

Many private cloud middleware come with a dedicated

scheduler for virtual machine placement to meet different goals.
Like OpenNebula’s built-in scheduler [9]-[10], mm_sched, it
can be configured using packing or stripping policy for placing
its VMs in host pool. While adopting the packing policy,
administrators need to use possible optimization approaches to
maximize the virtual machine density.

III. EXPERIMENT
In this section, we try to evaluate the suitability of these

memory overcommit techniques for deploying KVM-based
virtual machine. To understand the impact, we deployed the
above optimization mechanisms on real hosts and ran real
world workloads on guests to evaluate the potential advantages
and disadvantages.

A. Environment
Experimental tests were conducted on 2 hosts. Each host has

4 Intel i7 CPU cores with Intel VT-x support and 12GB of
DDR3 RAM. Since KSM function now is directly supported by
latest Linux kernel, we installed 64-bit CentOS 6.0 as host
operating system.

We evaluated the effectiveness of current memory
optimization techniques (ballooning, same-page merging and
migration) by booting guests and running virtualized workloads.
And we also evaluated the potential side effect while
simultaneously using ballooning and same-page merging.

In order to keep track of the memory variations, we recorded
the hosts and guests memory usage every two seconds. In
addition to Linux guest, we also arranged Windows guest to
compare effectiveness during same-page merging test. These
guests were default assigned 2048 MB memory.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1257

TABLE I
HOST MEMORY STATE AFTER GUEST BOOT

Host Used
Memory

(MB)

1VM 2VM 3VM 4VM 5VM 6VM

Linux
Guest

981 1360 1957 2448 2930 3414

Windows
Guest

2785 4859 6940 9017 11094 11751

Guest Memory
Current:2048 MB;

Max:2048 MB

Table I shows the initial host memory usage after guests OS

boot. These values are host memory usage while not running
user space program on guests. Notice that after booting 6
Windows guests, this 12 GB memory geared host started using
its swap memory.

B. Virtualized Workload
In order to know the impact of running user space

applications on guests while deploying memory optimization
mechanisms. Here, we had prepared a simple code which will
statically allocate 4 GB memory during execution. Fig. 5 shows
this code snippet. We used it as a guest application in the
following experiments.

Fig. 5 User space program code snippet

C. Deployment
In this paper, we decided to arrange three kinds of

experiments to evaluate the pros and cons while deploying
memory overcommit techniques.

Experiment (1)
Both Linux and Windows are popular operating systems now.

Cloud providers might have lots of chances putting Linux and
Windows guests together on a host. Therefore, we arranged
three tests to check how much memory KSM could actually
save on a host. The first step is to verify the effect of ksmd
service. We also deployed homogeneous and heterogeneous
guests as separate tests to see which type of guest OS is in favor
of same-page merging technique.

Experiment (2)
To check out the possible factor interfering KSM

performance, we arranged guests with different memory
capacity on a host for testing. And then we simultaneously
executed our Fortran program once on each guest. Since the
program will consume about 4 GB memory at a time, it is
convenient to monitor the host swap change to verify the

feasibility of KSM. In this test, we also add ballooning
mechanism while guest user space program running.

Experiment (3)
Shared network storage is pre-requisite for virtual machine

live migration. We prepared two hosts: one’s role is NFS server
and another is NFS client. The NFS server node placed a Linux
guest in the beginning. We use this test to see the response time
of memory variation during live migration.

IV. RESULTS AND ANALYSIS

A. Performance Evaluation of Virtualization Workloads
TABLE II

EXPERIMENT 1-1
KSM SERVICE EFFECTIVENESS

Host
Used
Memory
(MB)

0VM 1VM 2VM 3VM 4VM 5VM 6VM

KSM
disabled

677 1180 1665 2150 2637 3119 3606

KSM
enabled

684 1163 1647 2135 2618 3100 3582

KSM_SLEEP_MSEC=10

TABLE III
EXPERIMENT 1-2

HOMOGENEOUS GUESTS PERFORMANCE

Host
Pages

1V
M

2V
M

3V
M

4V
M

5V
M

6VM

Linux
Guest

sharing 42 124 208 292 376 458
shared 23 44 44 44 44 44

 unshared 24 6 9 12 15 18
Window
s
Guest

sharing 30 105 180 256 330 *424394
shared 14 45 45 45 46 46

 unshared 34 6 9 12 15 *85
KSM_SLEEP_MSEC=10

TABLE IV
EXPERIMENT 1-3

HETEROGENEOUS GUESTS PERFORMANCE

Host
Pages

2VM 4VM 6VM

Half Linux Guest
and
half Windows
Guest

sharing 103 253 *398794

shared 45 45 45

KSM_SLEEP_MSEC=10

The first test results listed in Table II manifests that
activating KSM service did not guarantee huge memory saving.
Table III shows the performance comparison between
launching Linux guests and Windows guests under kernel
same-page merging technique. The ratio of
pages_sharing/pages_shared steadily gets higher when placing
more similar guests. On the other hand, increasing similar
guests results in a proportional increase in host unshared pages.

From Table III, we found that running Linux guests on a host
will increase more memory saving than running Windows
guests. And KSM works well while host not running out of free
memory. After launching 6 Windows guests, there is a shortage
of free memory for host. Consequently, a very a weird

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1258

pages_sharing value calculated when the host began swapping
out pages.

Comparing Table III and Table IV, it seeks to capture the fact
that KSM efficiency drops while mixing Linux guest with
Windows guest.

TABLE V
EXPERIMENT 2-1

KSM WORKING WITH DIFFERENT MEMORY CAPACITY GUEST

Guest Memory
Host
Pages

1VM 2VM 2VM Run
App

Current:6144 MB;
Max:6144 MB

sharing 40 124 290515
shared 23 44 64

Guest Memory
Host
Pages

1VM 2VM 2VM Run
App

Current:4096 MB;
Max:6144 MB

sharing 40 19694 18839
shared 23 1097 414

Guest Memory
Host
Pages

1VM 2VM 2VM Run
App

Current:3072 MB;
Max:6144 MB

sharing 40 81347 80462
shared 23 1215 590

From Table V, KSM efficiency shows as expected when all

guests’ memory usage did not exceed their physical host’s free
capacity. Unfortunately once guests start executing memory
eating programs, the host will be forced to page out some of its
memory. The same thing happened again. The number of host’s
sharing memory pages sudden rises and then the number of
host’s used shared memory pages plummets by half.

TABLE VI

EXPERIMENT 2-2
KSM AND BALLOONING WORKING TOGETHER

Guest Memory

Host
Pages

1V
M

2V
M

2VM
Run
App

2VM Run App
with Ballooning

Current:5120 MB;
Max:6144 MB

sharin
g

40 20690 22731 37674

shared 23 1111 554 1543

From Table VI, it proves that ballooning and KSM should
not deploy at the same time. Likewise KSM still works well as
long as host did not do any memory swapping. Running more
identical guest application on similar guests increases KSM
efficiency. But when balloon driver starts shrinking guest’s
total memory, even the host did not start swapping, the ratio of
pages_sharing/pages_shared declines.

TABLE VII

LIVE MIGRATION EFFICIENCY

2 Nodes Connected over
Gigabit Ethernet Before Migration After Migration

Host-1
 (with 1 Guest launched)

Total 12038 MB
Used 1359 MB
Free 10678 MB

Total 12038 MB
Used 1213 MB
Free 10824 MB

Host-2 Total 12038 MB
Used 651 MB
Free 11386 MB

Total 12038 MB
Used 786 MB
Free 11251 MB

Host OS: CentOS 6 x86_64
Guest OS: Fedora Core 4 x86_64

It is a comfort to see that hosts’ memory variation become
explicit during live migration. According to Table VII, host will
quickly release both CPU load and memory pressure while
manually moving one virtual machine to another host.

V. CONCLUSION AND FUTURE WORK
The experiment results showed that KSM mechanism works

well only under certain conditions. During experimental
processes, we found that KSM is prone to be interrupted and
becomes invalid while directly running any memory
consuming application on host. For example, copying a huge
file or enforcing hibernation on host, these memory-related
manipulations will not be encouraged for memory
optimization.

And it is worth to notice that ballooning will meddle in the
operation of KSM. Mixed using these two methods shows no
good results. Memory ballooning might be an immediate way
to squeeze memory from guests. But only the guest itself knows
correctly which pages are shared and which are not. The ability
to more granular control of ballooning will require advanced
communication channel between the host and its guests.

The final experiment showed that live migration method has
positive effect to alleviate host’s memory load. Live migration
would be a reliable method to leverage the virtual workloads in
the cloud.

Server virtualization can deliver significant tangible benefits.
But resource overcommitting degree is crucial to leverage the
benefits. This paper explains how we evaluated the current
memory overcommit mechanism Linux provided. All the
results showed that KSM yields slight improvement. Once the
host memory is not sufficient, KSM does not scale out and
function normally. Given high capacity hosts (multi-cores, big
memory and high bandwidth) would be a more pragmatic way
when facing shortage. Migration virtual machine to another
free host currently may affect some guest’s functionality. For
example, if you’re running a VM hosting web or database
server. Live migration has more issues need to be considered.
Besides, a host pool is essential for on-premises deployment.

While current results helps system administrators manage
VMs’ memory allocation, it needs to be refined to meet
different goals for different users. Tests on latest Linux
resource management features such as Cgroups [11] will be
also our future work.

REFERENCES
[1] Manage resources on overcommitted KVM hosts,

http://www.ibm.com/developerworks/linux/library/l-overcommit-kvm-re
sources/.

[2] A. Arcangeli, I. Eidus and C. Wright, “Increasing memory density by
using KSM,” Available at:
http://www.kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf.

[3] J. H. Schopp, K. Fraser and M. J. Silbermann, “Resizing Memory With
Balloons and Hotplug,” Available at:
http://www.kernel.org/doc/ols/2006/ols2006v2-pages-313-320.pdf.

[4] R. Rose, “Survey of System Virtualization Techniques,” Available at:
http://www. robertwrose.com/vita/rose-virtualization.pdf, 2004.

[5] Kernel Virtual Machine (KVM) Best practice for KVM, Available at:
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaat/liaat
bestpractices_pdf.pdf.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:10, 2012

1259

[6] L. Nussbaum, O. Mornard, F. Anhalt, J. P. Gelas, “Linux-based
virtualization for HPC clusters,” Available at:
http://www.loria.fr/~lnussbau/files/linux-virtualization-mls09.pdf

[7] Kernel-based Virtual Machine,
http://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine/

[8] Neil Smyth, Red Hat Enterprise Linux 6 Essentials, 2010, ch. 21.
[9] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Capacity

Leasing in Cloud System using the OpenNebula Engine,” Cloud
Computing and Applications, 2008. Chicago, Illinois, USA.

[10] P. Sempolinski and D. Thain, “A Comparison and Critique of Eucalyptus,
OpenNebula and Nimbus,” in Proc. CloudCom’2010, pp.417–426.

[11] S. Seyfried, “Resource Management in Linux with Control Groups,”
Available at:
http://www.linux-kongress.org/2010/slides/seyfried-cgroups-linux-kongr
ess-2010-presentation.pdf.

