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 
Abstract—In the mining environment, tailings dam embankment 

is among the hazards and risk areas. The tailings dam embankment 
could fail and result to damages to facilities, human injuries or even 
fatalities. Periodic monitoring of the dam embankment is needed to 
help assess the safety of the tailings dam embankment. Artificial 
intelligence techniques such as fractals can be used to analyse the 
stability of the monitored dataset from survey measurement 
techniques. In this paper, the fractal dimension (D) was determined 
using D = 2-H. The Hurst parameters (H) of each monitored prism 
were determined by using a time domain of rescaled range 
programming in MATLAB software. The fractal dimensions of each 
monitored prism were determined based on the values of H. The 
results reveal that the values of the determined H were all within the 
threshold of 0 ≤ H ≤ 1 m. The smaller the H, the bigger the fractal 
dimension is. Fractal dimension values ranging from 1.359 x 10-4 m 
to 1.8843 x 10-3 m were obtained from the monitored prisms on the 
based on the tailing dam embankment dataset used. The ranges of 
values obtained indicate that the tailings dam embankment is stable. 

 
Keywords—Hurst parameter, fractal dimension, tailings dam 

embankment, surveyed dataset. 

I. INTRODUCTION 

AILINGS, also called mine dumps or leach residues are 
the materials left over after the process of separating the 

valuable part from the gangue of an ore [1]. Tailings are 
different from overburden. Overburden represents gangue or 
other material that lies on top of an ore and is removed in the 
process of mining and remains untreated [2]. Dams are usually 
constructed to store the tailings. A tailings dam is typically an 
earth-filled embankment dam used to stockpile by-products of 
mining operations after separating the ore from the gangue [3]. 
Tailings dams are some of the major man-made structures on 
earth. One of the most technically challenging areas for 
geotechnical engineers is how to maintain and monitor tailings 
dams. Over the last few decades, many tailings dam failures 
have occurred, and it is projected that about two to five major 
failures occur per year [4], [5]. Instability and likelihood of 
dam failure has a larger impact on the safety of mine workers 
and built-up infrastructure with concomitant environmental 
effects. Tailings dam collapse in mines are on the rise [6]. The 
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safety of these tailings dams has therefore become a major 
concern globally. Historical dam failure reveals three major 
causes: (i) leaching and internal erosion in the embankment 
(ii) leaching and erosion of the base and (iii) erosion of the 
overtopping [7].  

Tailings dam embankment saturation is due to leaching and 
erosion of the base and embankment, its strength is reduced 
leading to instability of the dam. The hydraulic conductivity of 
the core is strongly dependent on the core material and its 
compaction which directly determines the leaching rate [7]. 
Internal erosion is normally localised which makes it difficult 
to determine the leaching rate [6]. Traditionally to investigate 
internal erosion, visual inspection, pore-pressure 
measurements and measurement of leaching water volumes in 
dikes below the dam are used. It is therefore imperative for 
dam safety to be able to detect internal erosion by non-
destructive methods at an early stage of development [6]. To 
be able to know the condition of dams due to safety reasons, 
dams need to be consistently monitored and inspected. 
Supervision and regular monitoring of the tailings 
impoundment with suitable methods are mostly needed to 
obtain high degree of dam safety. The technologies available 
for monitoring deformation of tailings dams can be grouped 
into static and dynamic deformation monitoring methods [8]. 
The static method includes photoelectric monitoring 
technology, mechanical deformation measurement, and high 
precision GPS deformation measurement [8]. The dynamic 
deformation monitoring methods are photogrammetry 
methods, 3D laser technique and real-time dynamic GPS 
methods. The selection of a method depends on the nature of 
dam and the accuracy required for the monitoring [8]. All 
these monitoring methods have different precision and 
adaptability.  

To continue to ensure safety and predict the likelihood of 
tailings dam embankment collapse, there is the need for 
further studies using artificial intelligence techniques such as 
fractals to analyse the stability of tailings dams’ embankment. 

Mathematically, fractal dimension of a function can be 
expressed in different ways and assigned different sets of 
regularity measurements. Notwithstanding, mostly fractal 
evolution of α from f computed as against a particular quantity 
ɱf(α) is dependent on the scale or resolution transformation of 
fα of f. In this case, the fractal formalism indicates ɱf(α) 
behaving as a power law with respect to the analysis scale α, 
and that the regularity strength has a relationship to the power 
law exponent. 

Fractals define a set for which the Hausdorff-Besicovich 
dimension exceeding the topological dimension (e.g. 0 for 
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points; 1 for lines; 2 for areas) [10]; in this case, D is usually 
designated as the fractal dimension (D = 2-H). H represents 
the Hurst Parameter. Fractal dimension indicates how 
compactly a phenomenon occupies the space in which it is 
located. Fractals establish a limit. It models complex physical 
processes and dynamic system [10]. The Hurst parameter 
gives a degree for long term memory and fractality of a time 
series [11]. Calculation of the Hurst parameter is achieved 
using rescaled range analysis, aggregated variable method, 
absolute moment’s method etc. In this paper, the rescaled 
range analysis was considered.  

A research conducted by [12] used fractal theory approach 
to analyse the landslide displacement in Wanzhou District in 
China. The fractal theory was valuable in appreciating the 
deformation history of different parts of the landslide. In this 
study, fractal theory was applied to evaluate the deformation 
of tailings dam embankment periodic surveyed data in a mine. 
The time domain of rescaled range analysis was chosen for the 
determination of the Hurst parameter. The evaluation of the 
Hurst parameter and the fractal dimension of tailings dam 
embankment based on the surveyed data established the 
stability of the tailings dam used in the area. 

II. STUDY AREA 

The study area (Fig. 1) is positioned at the mid-southern 
part of the Western Region of the Republic of Ghana [13] with 
geographic coordinates between longitude 2˚ 10´ 00ʺ E - 1˚ 
45´ 00ʺ W and latitude 5º 25´ 00ʺ N - 4º 30´00ʺ S with an 
average topographic height of about 78 m above Mean Sea 
Level (MSL) [14]. Geographically, the topography is 
generally undulating with steep slopes parallel to each other 
and to the strike of the rocks in the North-South direction [15]. 
Currently, three large scale mining companies are operating in 
the area, namely; Goldfields Ghana Limited-Tarkwa Mine, 
AngloGold Ashanti-Iduapriem Mine and Ghana Manganese 
Company Limited-Nsuta. A host of small-scale mining groups 
are also scattered within the area. The activities of these mines 
have contributed to the socio-economic development of the 
area [16], [17].   

In this study, a total of 650 secondary data (3D coordinates) 
of weekly monitored prisms over a one-year period was used. 
The dataset was collected on fixed prisms at faces of the 
tailing dam embankment of a mining company in the study 
area. The data were examined and outliers were filtered by 
using Kalman filtering technique. 

 

 

Fig. 1 Study Area 
 

III. METHODS AND DATA 

A. Hurst Parameter and Rescale Range Analysis 

Different exponent estimations can be used for the 
determination of the Hurst parameter. Amongst them are 
rescale range analysis estimation method, absolute moment 
estimation method, wavelet analysis method etc. The rescale 

range analysis estimation for the determination of the Hurst 
parameter was used in this paper. 

The inception of rescale range analysis was by Hurst whilst 
working as a water Engineer in Egypt [18]. He then applied it 
to financial time series [19], [20]. It has been extensively used 
in studying persistence and long-term dependence in natural 
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time series. Reference [21] used rescaled range analysis to 
estimate the needed long-term storage for the Aswan high dam 
reservoir in Egypt. Previously, rescaled range analysis in 
conjunction with other more advanced methods have been 
extensively applied for the evaluation and modelling of 
persistence and long-term memory in real-world data in a 
variety of fields [22]. Amongst them are hydrology and water 
resources [23]-[25], geophysical records [26], [27] economics 
[28]-[30].  

The rescale range analysis (R/S) is to help analyse the range 
which is taken as a measure of dissipation of the series to 
follow a scaling law [31]. If a process is random, the measure 
of dissipation scales with respect to the square-root law so that 
a power in the scaling law is equal to 0.5. Such value is 
connected to Hurst exponent of 0.5. 

In this process, the returns of the time series of length T and 
then dividing them into N adjacent sub-periods of length ν 
while Nν=T [31]. Each sub-period is labeled as In with n= 1, 
2,… N. Additionally; each element in In is labeled rk,n with 
k=1, 2, ..ν. Each sub-period calculates an average value and 
builds new series of accumulated deviations from the 
arithmetic mean values (a profile). This is then followed by 
the calculation of the range, which is the difference between a 
maximum and a minimum value of the profile Xk,n, and 
standard deviation of the original return series for each sub-
period In. Each range RIn is standardized by the corresponding 
standard deviation SIn and forms a rescale range as 

 
(R/S)In = RIn/SIn                                    (1) 

 
This process is then repeated for each sub-internal of length 

ν to obtain an average rescaled ranges (R/S)ν for each sub-
internal of length ν. The length ν is increased and the whole 
process is started over. The length ν equal to the exponent of a 
set integer value is used. Thus, a bias b, a minimum power 
pmin and a maximum power pmax so that ν= bpmin, bpmin+1, …, 
bpmax ≤ T  are set [32]. 

Rescaled range then scales as; 
 

(R/S)ν ~ Cν
H                                                  (2) 

 
where C is a finite constant independent of ν [33], [34]. A 
linear relationship in double-logarithmic scale shows an 
exponent scaling [32]. To bring the scaling law to bare, an 
ordinary least squares regression on logarithms of each side of 
is used (2). Logarithm with basis equal to b is suggested. 
Thus,  

 
logb (R/S)ν ~ logb

c + Hlogb
ν                             (3) 

 
where H is the exponent. 

The Hurst parameter is then determined using rescaled 
statistical (R/S) range analysis [18]. This method was 
employed in this study. The Hurst parameter (H) represents a 
statistical measure used to classify time series. The values of 
the Hurst parameter range between 0 and 1 [18]. The rescaled 
statistical estimator of H is given as: 
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where R(τ) = amplitude range over a time window, τ, scaled to 
the standard deviation, S(τ) of the range.  
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The R/S for a given τ is R/S(τ) =  and H is the regression 

slope of log τ against log R/S(τ). In practice, in classical R/S 
analysis, H can be calculated using the slope of log/log plot of 
t (R / S) versus t. The H values were computed by scripting 
with MATLAB R2014a software using the rescaled range 
methodology and run against the calculated rate of movement 
of the original data. The H values computed were then used to 
derive the Fractal dimension of the dataset using the formula

2D H   ,  

B Fractal Dimension 

A fractal object is made-up of scaled replicas of itself, it has 
an unlimited length and it is infinitely complex when the scale 
decreases. In this case, the object is self-similar at a variety of 
scales [35]. The fractal dimension, also known as the 
similarity dimension (D), shows basic characteristics of a 
fractal object and depicts the correlation between the apparent 
length and measurement scale [11]. Generally, fractal 
geometry has a shape characterised by distortions that cannot 
be explained by Euclidean structures. For ordinary Euclidean 
shapes, the D value of points is 0; line is 1; and area is 2. D is 
always an integer. But to measure the characteristic size of a 
fractal object by linear scaling, usually the results of D are not 
an integer and exceed the Euclidean dimension [36]. The 
framework on the evaluation of the fractal dimension is 
illustrated in Fig. 2. 

The determination of H and D was based on the dataset 
obtained from the calculation of the rate of movement of the 
tailings dam embankment. The rate of movement was also 
computed from the monitored prism dataset from the walls of 
the tailings dam embankment. The rate of movement of each 
monitoring prism was used with the Rescaled Range estimator 
time domain to calculate for the Hurst parameter by coding 
using MATLABR2014a software. 

IV. RESULTS AND DISCUSSION 

Tables I and II show the results for the Hurst parameter and 
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Fractal dimension respectively. 
 

 
Fig. 2 Flowchart of Fractal Theory 

 
TABLE I 

ESTIMATED HURST PARAMETER 

Prism Name Hurst Parameter (m) 

MB 1 1.1570 x 10-4 

MB 2 1.3699 x 10-3 

MB 3 9.0940 x 10-4 

MB 4 7.8070 x 10-4 

MB 5 2.5880 x 10-4 

MB 6 8.4440 x 10-4 

MB 7 2.1920 x 10-4 

MB 8 1.5023 x 10-3 

MB 9 1.8641 x 10-3 

MB 10 5.2210 x 10-4 

MB 11 1.0013 x 10-3 

MB 12 1.3940 x 10-3 

MB 13 8.5040 x 10-4 

MB 15 1.0638 x 10-3 

MB 16 1.0324 x 10-3 

 
In [18], a smaller Hurst parameter gives a larger fractal 

dimension and a larger Hurst parameter gives a smaller fractal 
dimension. Comparatively, from the result in Tables I and II 
there was lesser deformation process occurring at prism MB 9 
because of a smaller fractal dimension and hence making that 
particular prism point more stable and a higher deformation 
process at MB 1 due to a larger fractal dimension hence 
making that particular prism less stable. 

Since the goal was to get a value range of 0 to 1 m from 
[18] with respect to the Hurst parameter, the results in Table I 
and II were within the threshold and are all stable. Also, the 
results approaching zero shows that, the fractal object was a 
point. 

 
TABLE II 

ESTIMATED FRACTAL DIMENSION 

Prism Name Fractal Dimension (m) 

MB 1 1.8843 x 10-3 

MB 2 6.3010 x 10-4 

MB 3 1.0906 x 10-3 

MB 4 1.2193 x 10-3 

MB 5 1.7412 x 10-3 

MB 6 1.1556 x 10-3 

MB 7 1.7808 x 10-3 

MB 8 4.9770 x 10-4 

MB 9 1.3590 x 10-4 

MB10 1.4779 x 10-3 

MB 11 9.9870 x 10-4 

MB 12 6.0600 x 10-4 

MB 13 1.1496 x 10-3 

MB 15 9.3620 x 10-4 

MB 16 9.6760 x 10-4 

V. CONCLUSIONS 

The following conclusions are made: 
 The Hurst parameters of the monitored tailings dam 

embankment based on the surveyed dataset were 
determined, and are all within the threshold of 
0    1mH  ; 

 The fractal dimensions of the tailings dam embankment 
dataset were determined with values ranging from 1.359 x 
10-4 m to 1.8843x 10-3 m; and  

 From the results of the Hurst parameter and fractal 
dimensions determined, the tailings dam embankment is 
very stable, since the results of all the monitored prisms 
were within the thresholds. 
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