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Abstract—Considerable focus in the world of insurance risk 

quantification is placed on modeling loss values from lines of 
business (LOBs) that possess upper tail dependence. Copulas such as 
the Joe, Gumbel and Student-t copula may be used for this purpose. 
The copula structure imparts a desired level of tail dependence on the 
joint distribution of claims from the different LOBs. Alternatively, 
practitioners may possess historical or simulated data that already 
exhibit upper tail dependence, through the impact of catastrophe 
events such as hurricanes or earthquakes. In these circumstances, it is 
not desirable to induce additional upper tail dependence when 
modeling the joint distribution of the loss values from the individual 
LOBs. Instead, it is of interest to accurately assess the degree of tail 
dependence already present in the data. The empirical copula and its 
associated upper tail dependence coefficient are presented in this 
paper as robust, efficient means of achieving this goal. 
 

Keywords—Empirical copula, extreme events, insurance loss 
reserving, upper tail dependence coefficient. 

I. INTRODUCTION 
HE Gaussian copula [1] has enjoyed great popularity 
among actuaries and other practitioners in the insurance 

industry for the purpose of modeling aggregate losses arising 
from multiple risk sources. Its widespread appeal derives in 
large part from the necessity to evaluate only one input 
parameter, the Pearson Correlation Coefficient [2], in order to 
fit the copula. It retains the inherent appeal of all copulas as an 
alternative to modeling the multivariate distribution of several 
variables: one can focus on accurately modeling the univariate 
marginal loss distributions prior to unifying them under the 
copula structure.  

However, with the advent of the 2008 global financial 
crash, the Gaussian copula received immense criticism as 
being implicit in the economic meltdown [3]. The negativity 
centered on its inability to incorporate tail dependence 
between marginal distributions, a feature that proved to be 
markedly unrealistic for the financial products it was being 
used to model. The Student-t copula has been suggested as a 
natural successor to the Gaussian copula, since it does 
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incorporate right tail dependence between its marginal 
distributions [4]. Consequently its use has been promoted in 
financial and insurance regulation, including Solvency II. 
Unfortunately the Student-t copula assumes that the input data 
arises from an elliptical distribution for each marginal, which 
is clearly unrealistic for many practical applications. 

Alternatively, right-tailed Archimedean copulas including 
the Joe and Gumbel copulas may be used, and have been 
documented extensively in industry literature for the benefit of 
actuarial practitioners [5]. These Archimedean copulas show 
significant promise as a means of progressing beyond the 
Gaussian approach to assimilating marginal distributions. 
They do suffer from their own drawbacks in terms of 
underlying assumptions however, primarily their inability to 
capture lower tail dependence. Hence some firms may choose 
instead to “manually” construct a loss model based on the 
underlying real-world processes that generate losses, such as 
extreme weather events. Irrespective of the type of model used 
to simulate losses, it is imperative that the simulations from 
such models be examined to determine the extent to which 
they reflect the risk of an extreme total loss to the company 
within a fixed time period. Such extreme losses occur when 
most or all lines of business suffer extreme individual losses 
simultaneously, a phenomenon known as “tail dependence”. 

A natural approach to gauging a model’s ability to 
effectively simulate extreme total loss events is to use the 
empirical copula [6] to assess the level of upper tail 
dependence between lines of business in the model. This 
provides the standard benefit of all non-parametric approaches 
in that it does not make any distributional assumptions as to 
the form of the copula or the nature of the underlying data. 
Through novel manipulation of the link between the joint 
empirical distribution of the data and the empirical copula, a 
robust estimate of upper tail dependence can be extracted. 

II. DATA 
The data comprise of 50,000 simulated general insurance 

loss claims across each of 9 lines of business (LOBs). For the 
purposes of confidentiality, the nature of each line of business 
was not disclosed, nor was the exact nature of the simulation 
process. However, it is known that each loss value can be 
decomposed into three components, namely the large loss (L), 
attritional loss (A) and catastrophe loss (CAT) layers. The sum 
of these produces the overall loss value for each LOB in each 
simulation. 
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The large and attritional loss values are simulated from 
standard statistical distributions such as the exponential or 
gamma, parameterized using Kiln’s historical claims 
experience. The addition of the CAT loss layer imparts upper 
tail dependence on the modeled loss process reflecting 
underlying events or losses to which LOBs are exposed. In 
each simulation a random number of CAT events are 
simulated, each with their own loss size. These losses are then 
added to some, but not all, lines of business, with appropriate 
scaling to reflect the degree of exposure of that LOB to the 
type of CAT loss simulated.  

For example, general insurance claims from LOBs covering 
car and home insurance for a coastal city would both be 
significantly impacted by a simulated hurricane CAT event; 
whereas similar LOBs for a landlocked city would not. Hence 
the first pairing of LOBs would be expected to display upper 
tail dependence in this instance whereas the second pairing 
would not. Fig. 1 presents the pairs plots of the simulated loss 
claims for all 9 lines of business. Fig. 2 presents the pairs plot 
for lines of business 5 and 6 only. This pairing is used for 
illustrative purposes later in the paper due to the high level of 
upper tail dependence between the variables it encapsulates. 

 

 
Fig. 1 Pairs plot of the simulated loss data for 9 lines of business 

 
The ultimate goal when producing simulated loss data of 

this nature is to identify extreme total loss events, which occur 
when a large number of CAT losses each impact multiple 
LOBs within a single time period (i.e. multiple LOBs that 
have upper tail dependence). The insurance company must be 
able to demonstrate solvency to the regulator under such 
extreme scenarios, achieved by setting aside sufficiently large 
capital reserves. Insurance companies increasingly attempt to 
incorporate upper tail dependence in their loss models, 
through copula-based or other procedures [7]. The empirical 
copula provides a natural method of verifying whether or not 
their attempts have proven successful. 

 
Fig. 2 Pairs plot of the simulated loss data for LOBs 5 and 6. 

III. METHODS 

A. The Empirical Copula 
Sklar’s Theorem [8] describes the dependence between two 

or more random variables X1, X2, … ,Xd. It states that the joint 
cumulative distribution function (CDF) of the random 
variables,ܪሺݔଵ, … ,  ௗሻ, can be expressed as a function C of theݔ
marginal CDFs, ܨଵሺݔଵሻ, … ,  :ௗሻݔௗሺܨ
 

,ଵݔሺܪ … , ௗሻݔ ൌ  Զሺ ଵܺ ൑ ,ଵݔ … , ܺௗ ൑  ௗሻ     (1)ݔ
 

,ଵݔሺܪ                 … , ௗሻݔ ൌ ,ଵሻݔଵሺܨ൫ܥ  … ,  ௗሻ൯      (2)ݔௗሺܨ
 

C is known as a copula and is unique if all marginal 
CDFs,ሺܨଵ, … ,  ௗሻ, are continuous (which is true for theܨ
simulated loss data). 

In the case of the empirical copula, the equivalence of (1) 
and (2) means that it is straightforward to fit the copula 
structure by simply calculating the joint empirical CDF of the 
observed values of the variables. However, some novel 
adjustments are required if the ultimate goal is to derive the 
upper tail dependence coefficient from the empirical copula. 
Primarily, estimated joint CDF values must be sourced for 
pairings of X and Y values not present in the observed data, or 
the empirical copula fitted will not be smooth across the range 
of the variables [9]. Further details are provided in Section III. 

B. The Upper Tail Dependence Coefficient 
Upper tail dependence between two random variables is the 

phenomenon whereby knowledge of the realisation of a large 
(tail) value for one random variable increases the probability 
of a large value being realised for the other random variable. 
The concept extends to the general case of multiple random 
variables. The upper tail dependence coefficient [10], ߣ௎, is a 
numerical value that captures this information, calculated as: 
 

௎ߣ ൌ lim௩՜ଵష ܲ൫ܻ ൐ ሻหܺݒ௒ିଵሺܨ ൐ ሻ൯ݒ௑ିଵሺܨ      (3) 
 

In a copula-based setting this can also be expressed as: 
 

௎ߣ ൌ lim௩՜ଵష
ଵିଶ௩ା஼ሺ௩,௩ሻ

ଵି௩
            (4) 

 
For the family of parametric copulas, the form of C 

employed in (4) will produce its own specific formulation for 
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 ௎ for each copula. In the case of the non-parametricߣ
empirical copula, [11] provides a useful derivation of the form 
taken by ߣ௎for two random variables: 
 

௎ߣ ൌ 2 െ
௟௡  ஼ሺଵି೟೅,   ଵି

೟
೅ሻ

௟௡ ሺଵି೟೅ሻ
ݐ ൎ  √ܶ     (5) 

 
where ln denotes the natural logarithm and T denotes the 
number of observations present for each of the marginal 
distributions. 

However, as is the case for other sources presenting such 
results for tail dependence, there is scant illustration as to how 
the value might be calculated in a practical setting, and the 
means by which the process may be automated for speed and 
efficiency. There is also minimal guidance given as to the 
sensitivity of the estimate of upper tail dependence to the input 
parameter t. This paper and its accompanying package 
EmpCop, currently under development for the statistical 
programming language R [12], seek to remedy these 
deficiencies. 

The key intuition required when applying (5) is that, 
although values(X=x*) and (Y=y*) yielding CDF values close 
to ሺ1 െ ௧

்
ሻ may exist for each of the marginal distributions 

separately; the paired value (x*, y*) is unlikely to exist in the 
observed data and possess a corresponding joint empirical 
CDF value. Hence the joint empirical CDF must be 
extrapolated and estimated at regular intervals not present in 
the observed data in order to find an approximation to the 
intersectionܥሺ1 െ ௧

்
, 1 െ ௧

்
ሻ.The steps required to calculate 

the estimate of ߣ௎ for two random variables are provided in 
algorithmic form in Section III C. 

C. Using the Empirical Copula to Estimate the Upper Tail 
Dependence Coefficient 

Assuming that the random variables for losses arising from 
two lines of business are denoted by X and Y and that there are 
T observations in total for each of X and Y: 
1. Sort the marginal values of X and Y in ascending order. 
2. Compute the marginal empirical CDFs for X and Y. 
3. Scale each set of marginal empirical CDF values by the 

multiplicative constant T/(T+1). This prevents the 
maximum loss in each marginal having a CDF value of 1 
(this is desirable since losses above the maximum value 
simulated are possible). 

4. Calculate the value ሺ1 െ ௧
்
) using t = √ܶ, the joint CDF 

intersection point of interest. 
5. Find the largest value x’ such that P(X<x’) <ሺ1 െ ௧

்
). In 

other words find the value of X that has marginal CDF as 
close as possible to the desired value ሺ1 െ ௧

்
). 

6. Repeat step 5 for Y to identify y’. 
7. Calculate the joint CDF for X and Y, extrapolated for 

paired values of X and Y not present in the underlying 
data, H*(x,y). Many approaches to this problem are 
available. We employ the nonparametric kernel 
smoothing method present in the np package in R [13]. 

8. Use the extrapolated joint CDF formed in step 7 to find 
the value H*(x’,y’). Using (1) and (2) from Sklar’s 
Theorem this result can be expressed as: 

 
H*(x’,y’) ൎ  Զ(X<x’, Y<y’) ൎ ܥ ቀ1 െ ௧

்
, 1 െ ௧

்
ቁ  (6) 

 
9. Calculate the value of the upper tail dependence 

coefficient ߣ௎′ using (5) and substituting H*(x’,y’) for 
ሺ1ܥ െ ௧

்
,   1 െ ௧

்
), as detailed in (6). 

For small data sets it is desirable to calculate a second 
estimate of the upper TDC,ߣ௎ԢԢ. This is done by returning to 
step 5 and finding x’’ and y’’ such that x’’ and y’’ are the 
smallest values of  X and Y resulting in P(X<x’’)>ሺ1 െ ௧

்
) and 

P(Y< y’’) >ሺ1 െ ௧
்
). This can be averaged with ߣ௎’ to give a 

more robust estimate of the upper TDC. As the number of 
observations T increases, ߣ௎Ԣ and ߣ௎ԢԢ converge to the same 
value. 

IV. RESULTS 
Using the methodology described in Section III, tail 

dependence coefficients were calculated for all pairings of 
lines of business in the simulated loss data. A fixed subset of 
size 2,500 claims was used for this purpose. Beyond this value 
of T the computation time becomes cumbersome for a 
standard laptop processor. However, subdividing the data into 
samples of size 2,500 permitted the volatility of the results for 
tail dependence to be checked across separate samples, a 
marked advantage to not using the data in its entirety at a 
single pass. 

The main source of computational burden associated with 
this method is the formation of the extrapolated grid of joint 
cumulative distribution values across the variables, outlined in 
Section III C. However, for industrial purposes, the use of a 
computer cluster or mainframe would likely render the process 
feasible for larger values of T and in higher dimensional 
settings than the bivariate case considered in this work. Hence 
it is expected that the EmpCop package for R that is currently 
under preparation will prove very appealing to end users 
interested in assessing tail dependence in insurance loss 
settings and beyond.  

The results for upper TDCs proved to be unanimously 
consistent with expectations as to the nature of the underlying 
lines of business and how they were affected by simulated 
catastrophe loss events that induce tail dependence. Table I 
presents the mean upper TDC values recorded for each LOB 
pairing across the 20 samples of simulated loss values, each of 
size 2,500. The results for the upper TDCs also displayed 
minimal volatility across the 20 samples. For illustrative 
purposes, consider the case of lines of business 5 and 6, as 
presented in Fig. 2. This pairing of LOBs is known to be 
subject to the same CAT events and to similar degrees. Hence 
high upper tail dependence in the simulated losses is desirable 
if the underlying loss model is efficiently recreating real world 
risk sources. The mean upper tail dependence coefficient 
recorded for this LOB pairing was 0.866 with a standard 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:1, 2014

29

 

 

deviation of 0.051. Fig. 3 provides a histogram of the values 
of upper TDC ߣ௎ recorded across the 20 sub-samples of loss 
claims for LOBs 5 and 6. 

It was deemed essential to check the sensitivity of the 
results for upper TDCs to the assumed value for the input 
parameter ݐ ൌ  √ܶ. Hence, for each of the LOB pairings, a 
fixed sample of 2,500 simulated loss values was used to 
evaluate ߣ௎, with t varied from the value 45 to the value 55 in 
increments of 1 unit, i.e. 5 units either side of its base value of 
t = √2500 = 50. Reassuringly the results for upper TDC 
across LOB pairings displayed minimal volatility for 
variations in the value of t. As an illustration, Fig. 4 presents a 
line plot of upper TDC values for lines of business 5 and 6 for 
the prescribed range of values of t.    

 
Fig. 3 Histogram of upper tail dependence coefficients using the 

empirical copula for 20 samples of 2,500 simulated loss claims across 
lines of business 5 and 6 

 
TABLE I 

MEAN UPPER TDC VALUES FOR ALL LOB PAIRINGS USING 20 SAMPLES OF 2,500 SIMULATED LOSS CLAIMS

 LOB1 LOB2 LOB3 LOB4 LOB5 LOB6 LOB7 LOB8 LOB9 
LOB1  0.590 0.127 0.445 0.817 0.793 0.258 0.087 0.142 
LOB2   0.171 0.479 0.566 0.566 0.238 0.104 0.143 
LOB3    0.054 0.090 0.047 0.058 0.089 0.013 
LOB4     0.494 0.472 0.254 0.053 0.075 
LOB5      0.866 0.424 0.110 0.087 
LOB6       0.313 0.101 0.055 
LOB7        0.183 0.020 
LOB8         0.087 
LOB9          

 
V.  CONCLUSION 

The empirical copula provides a robust method of 
estimating the upper tail dependence coefficient between lines 
of business in an insurance loss setting. It is demonstrated to 
exhibit low sensitivity to its input parameter and provides 
stable results upon repeated resampling of the data. The 
empirical copula based approach offers users the benefit of 
requiring no assumptions as to the distributional nature of the 
underlying data or the copula used to assimilate the marginal 
random variables. In the practical setting of general insurance 
claims, this gives firms the flexibility to model the loss 
processes governing their lines of business according to any 
prescription, copula-based or otherwise, that reflects the tail 
dependence present between the sources of loss. Simulated 
values from the fitted model can then be tested using the 
empirical copula approach to verify that upper tail dependence 
has been successfully incorporated. This affords the user 
greater confidence in identifying extreme total loss events and 
setting aside appropriate reserves to ensure their solvency. 
 

 
Fig. 4 Line plot showing variation in upper TDC for a sample of 

2,500 simulated loss claims for different values of input parameter t 
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