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Abstract—Saturated hydraulic conductivity is one of the soil 

hydraulic properties which is widely used in environmental studies 
especially subsurface ground water. Since, its direct measurement is 
time consuming and therefore costly, indirect methods such as 
pedotransfer functions have been developed based on multiple linear 
regression equations and neural networks model in order to estimate 
saturated hydraulic conductivity from readily available soil 
properties e.g. sand, silt, and clay contents, bulk density, and organic 
matter. The objective of this study was to develop neural networks 
(NNs) model to estimate saturated hydraulic conductivity from 
available parameters such as sand and clay contents, bulk density, 
van Genuchten retention model parameters (i.e. 

rθ , α , and n) as well 
as effective porosity. We used two methods to calculate effective 
porosity: (1) 

FCseff θθφ −= , and (2) 
infθθφ −= seff

, in which
sθ is 

saturated water content,
FCθ  is water content retained at -33 kPa 

matric potential, and infθ  is water content at the inflection point. 
Total of 311 soil samples from the UNSODA database was divided 
into three groups as 187 for the training, 62 for the validation (to 
avoid over training), and 62 for the test of NNs model. A commercial 
neural network toolbox of MATLAB software with a multi-layer 
perceptron model and back propagation algorithm were used for the 
training procedure. The statistical parameters such as correlation 
coefficient (R2), and mean square error (MSE) were also used to 
evaluate the developed NNs model. The best number of neurons in 
the middle layer of NNs model for methods (1) and (2) were 
calculated 44 and 6, respectively. The R2 and MSE values of the test 
phase were determined for method (1), 0.94 and 0.0016, and for 
method (2), 0.98 and 0.00065, respectively, which shows that method 
(2) estimates saturated hydraulic conductivity better than method (1). 
 

Keywords—Neural network, Saturated hydraulic conductivity, 
Soil physical properties.  

I. INTRODUCTION 
EVERAL methods have been developed to estimate 
saturated hydraulic conductivity such as empirical models 

[1], semi empirical models [2-4], pedotransfer functions [5-
11]. 

Semi empirical equation of Kozeny-Carman was proposed 
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by Kozeny and later modified by Carman. The resulting 
equation is largely known as the Kozeny–Carman (KC) 
equation, although the two authors never published together. 
Limitations of Kozeny-Carman formula has been widely 
discussed in Carrier [12]. 

Ahuja et al. [13] modified Kozeny-Carman formula by 
defining an effective porosity as follows and showed that its 
applicability to a wide range of soils from the Southern 
Region of the USA, Hawaii, and Arizona: 

  
n
es BK φ=               (1) 

 
where Ks is saturated hydraulic conductivity, eφ is the 

effective porosity, and B and n are the coefficient and 
exponent of model, respectively. 

Ahuja et al. [14] and Franzmeier [15] indicated a degree of 
universality of Ahuja et al. [13] model for several soils from 
Korea and a variety of soils from Indiana, respectively. 

Messing [16] presented data for some Norwegian soils 
where Ahuja et al. [13] model fitted the data for individual 
soils well, but the coefficients varied with soil type. Timlin et 
al. [17] reported a value of 0.0021 (m/s) and 3.29 for B and n 
parameters in Eq. (1), respectively.  

Since different values of coefficient B and exponent n have 
been found for different data sets, Pachepsky et al. [18] used 
neural networks to find how these parameters are related to 
the parameters of Brooks and Corey [19] such as air entry 
value and pore-size distribution index. Their results showed 
that as the values of pore-size distribution index decreased 
from 1 to 0, values of B and n decreased.  

Han et al. [20] developed a new model to estimate saturated 
hydraulic conductivity from soil structural properties derived 
from water retention curve. These authors showed that the 
inflection point of water retention curve includes useful 
information for modeling Ks.  

Recently, neural networks have been widely used in 
simulation, classification and optimization of engineering 
sciences [21]. In the soil science, neural networks models 
have been applied in estimation of infiltration rate [22], cation 
exchange capacity [23], and saturated hydraulic conductivity 
[11, 24, 25]. 

Since there is no NNs model to estimate saturated hydraulic 
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conductivity from available data such as soil texture, soil 
water retention curve as well as bulk density, the objective of 
this study was to (1) develop a neural networks model for 
estimating saturated hydraulic conductivity from sand and 
clay contents, van Genuchten retention model parameters, and 
bulk density, and (2) compare two different definitions of 
effective porosity in estimation of saturated hydraulic 
conductivity using NNs model.  

II. MATERIALS AND METHODS 

A. Data collection 

In this study, 311 samples of the UNSODA database [26] 
with a wide range of soil texture were used. Fig. (1) gives the 
distribution of samples within the soil texture triangle based 
on the USDA classification. 

van Genuchten [27] retention model parameters such as 
αθθ ,, rs

and n  were determined by direct fitting of van 
Genuchten [27] model to the measured data using RETC code 
[28]. The optimized vG model parameters were used to 
calculate water content retains at -33 kPa, 

FCθ , and inflection 
point, infθ [29].  

In method 1, the effective porosity which was determined 
based on the Ahuja et al. [13] approach was used as a 
predictive variable in development of NNs model: 

 
FCseff θθφ −=               (2) 

 
Dexter [29] explained that at the inflection point the 

behavior of soil moisture curve changes. For soil drying 
between saturation and the inflection point, it is mainly 
structural pores that are emptying. However, for soil drying 
below the inflection point, it is mainly textural pores that are 
emptying. In addition to the Ahuja et al. [13] approach, a new 
definition of effective porosity proposed by Han et al. [20] 
based on the inflection point of soil water retention curve was 
used as follows (method 2): 

 
 

  infθθφ −= seff
              (3) 

 

B. Neural networks model 

An artificial neural network is a highly interconnected 
network of many simple processing units called neurons, 
which are analogous to the biological neurons in the human 
brain [22] and commonly consists of three layers, an input 
layer, a hidden layer, and an output layer. 
 

 
 
 
 
 
 

Fig. 1 Soil texture triangle of the UNSODA database samples used 
in this study 

 
In several studies, feed forward networks in which the 

weighted connections feed activations only in the forward 
direction from an input layer to the output layer have been 
successfully used in combination of back propagation training 
algorithm which is a gradient descent algorithm [30-32]. 

In this study, a Multi Layer Perceptron (MLP) neural 
networks model with one hidden layer was used to estimate 
saturated hydraulic conductivity. This neural networks model 
consisted of a LOGSIG activation function in the hidden layer 
and a TANSIG activation function in the output layer. The 
number of Epochs was selected by MATLAB software for 
training the neural networks model. Furthermore, the best 
training model was selected by changing the number of 
neurons in the middle layer.  

In this study in order to avoid over training, total of 311 
was divided into three groups as 187 (60%) to develop, 62 
(20%) to validate, and 62 (20%) to test the neural networks 
model. Input predictive variables such as clay and sand 
percentages, bulk density, effective porosity and vG retention 
model parameters such as αθ ,r

and n  of the development data 
set were standardized, and then were used to train the MLP 
neural networks model. As it was mentioned before, two 
different definitions of effective porosity were used to develop 
two NNs models and their performances were compared with 
each other. All the processes were carried out by Neural 
Network toolbox of MATLAB software [33]. 

 

C. Statistical criteria 

In order to evaluate the developed neural networks model, 
the statistical parameters such as mean square error (MSE) 
and correlation coefficient (R2) were calculated as follows: 
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The less the MSE value, the better train the model. 

III. RESULTS AND DISCUSSION 
Variation of Ks in the logarithmic scale versus different 

input predictive variables of neural networks model such as 
sand and clay contents, bulk density, vG model parameters 
and effective porosity calculated by using two different 
approaches for all 311 soil samples are shown in Fig. (2). This 
figure shows that when sand and clay contents increase, 
saturated hydraulic conductivity increases and decreases, 
respectively. No clear trend is evident between Ks and bulk 
density. By removing the zero values of residual water 
content, Fig. (2) also indicates that when residual water 
content increases, Ks decreases. However, there is a lot of 
scatter in the data. The result is in agreement with the result of 
Schaap et al. [34]. The authors presented average values of 
residual water content and Ks for 9 soil textural classes and 
showed that if clay content increases, residual water content 
increases as well and Ks decreases. The results also show that 
when vG model parameter n increases, Ks increases as well. 

 Fig. (2) also shows the variation of Ks as a function of two 
definitions of effective porosity. This figure indicates that 
when effective porosity increases, Ks increases as well. 
However, the values of Ks versus 

FCs θθ −  values are in a more 
restricted range compared with the values of Ks versus 

infθθ −s
 values. 

In this study, organic matter (OM) was not included as a 
predictive variable for developing the neural networks model 
because of the unavailability of this measurement for all 
samples of data set. Although, some researches have showed 
that when organic matter increases, saturated hydraulic 
conductivity decreases. Nemes et al. [35] investigated the 
influence of organic matter on the estimation of saturated 
hydraulic conductivity. Their results showed a strong 
indication that there is a negative relationship between OM 
and Ks. The authors justified this explanation by the fact that 
organic matter retains soil water well and does not allow water 
to flow freely. On the other hand, OM may also affect the pore 
size distribution of the soil through soil structure development 
which also affects the soil hydraulic conductivity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Variation of saturated hydraulic conductivity versus input 

parameters of neural networks model for 311 soil samples 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Continued 
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The statistical parameters of neural networks model 

development, validation and test for methods 1 and 2 are 
presented in Tables 1 and 2, respectively. As it was 
mentioned before, the number of neurons in the hidden layer 
was determined by try and error method. In addition, the best 
model of neural networks was selected based on the two 
statistical parameters e.g. MSE and R2 calculated for 
development, validation and test steps. The less the MSE 
value and the higher R2 value, the better the model. 

The MSE and R2 values presented in Table 1 show that the 
best structure for method 1 is neural networks model with 44 
neurons in the hidden layer. The MSE values of development 
and test steps were calculated 0.001 and 0.002 [(cm/day)2], 
respectively, indicating that neural networks model has been 
developed well and estimated saturated hydraulic 
conductivity accurately. The R2 values were also calculated 
for development and test steps 0.98 and 0.94, respectively, 
which show that the estimated and measured Ks values are 
highly correlated. 

Table 2 also shows the calculated values of MSE and R2 
for method 2. The results indicate that the best structure of 
neural networks model for method 2 is when 6 neurons were 
used in the hidden layer. The MSE values of development 
and test steps were calculated 0.0004 and 0.001 [(cm/day)2], 
respectively, which are less than the MSE values for method 
1. 

The less MSE values of method 2 in comparison with 
method 1 shows that method 2 in which the new definition of 
effective porosity presented by Han et al. [20] was used 
estimated saturated hydraulic conductivity slightly better 
than method 1. The low and high values of MSE and R2 
values for both methods 1 and 2 also indicate that both 
methods estimated saturated hydraulic conductivity well. 

IV. CONCLUSION 
In this study, available soil physical properties such as soil 

texture data (sand and clay contents), soil water retention 
curve e.g. vG retention model parameters, bulk density, and 
effective porosity were used to develop neural networks 
model in estimation of saturated hydraulic conductivity. 
Based on two definitions of effective porosity, two neural 
networks models were developed and their performances were 
compared with each other. It was found that method 2 in 
which neural networks model had been developed based on 
the new definition of effective porosity estimated saturated 
hydraulic conductivity slightly better than method 1. 

 
 
 
 
 
 
 
 

TABLE  I 
STATISTICAL PARAMETERS CALCULATED FOR THE DEVELOPMENT, 

VALIDATION, AND TEST STEPS OF METHOD 1 

 
 
 
 
 
 

Development Validation Test No. of 
neurons 

No. of 
epochs MSE R2 MSE R2 MSE R2 

2 18 0.003 0.92 0.002 0.91 0.004 0.51 
3 15 0.006 0.89 0.002 0.51 0.005 0.77 
4 8 0.009 0.96 0.004 0.43 0.005 0.50 
6 18 0.001 0.96 0.004 0.86 0.003 0.91 
7 10 0.004 0.71 0.016 0.59 0.018 0.54 
9 10 0.004 0.98 0.004 0.48 0.003 0.47 

10 12 0.001 0.98 0.002 0.72 0.007 0.78 
11 9 0.003 0.97 0.005 0.50 0.008 0.87 
12 19 0.001 0.92 0.003 0.93 0.013 0.85 
13 19 0.001 0.98 0.005 0.41 0.002 0.93 
14 11 0.002 0.98 0.002 0.56 0.006 0.37 
15 13 0.000 0.99 0.003 0.62 0.005 0.67 
16 7 0.008 0.71 0.009 0.56 0.012 0.67 
17 25 0.001 0.98 0.005 0.84 0.001 0.81 
21 15 0.002 0.96 0.002 0.90 0.008 0.47 
22 16 0.000 0.99 0.002 0.71 0.003 0.90 
23 20 0.002 0.93 0.002 0.88 0.001 0.98 
24 24 0.000 0.98 0.006 0.64 0.006 0.82 
25 10 0.002 0.96 0.001 0.96 0.007 0.89 
28 6 0.003 0.97 0.001 0.96 0.001 0.97 
29 21 0.000 0.94 0.008 0.52 0.019 0.65 
30 9 0.003 0.99 0.006 0.43 0.006 0.20 
32 9 0.002 0.99 0.002 0.48 0.003 0.88 
33 14 0.002 0.98 0.002 0.50 0.006 0.40 
34 10 0.013 0.87 0.003 0.07 0.016 0.69 
36 10 0.003 0.96 0.006 0.31 0.002 0.93 
37 10 0.002 0.99 0.011 0.13 0.010 0.78 
38 8 0.002 0.99 0.005 0.70 0.002 0.67 
40 13 0.001 0.99 0.004 0.52 0.002 0.95 
41 11 0.001 0.98 0.006 0.32 0.002 0.93 
42 9 0.005 0.99 0.007 0.49 0.005 0.47 
44 13 0.001 0.98 0.003 0.88 0.002 0.94 

45 8 0.004 0.99 0.009 0.76 0.002 0.62 

50 17 0.001 0.99 0.001 0.44 0.005 0.85 
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TABLE II 

STATISTICAL PARAMETERS CALCULATED FOR THE DEVELOPMENT, 
VALIDATION, AND TEST STEPS OF METHOD 2. 

Development Validation Test No. of 
neurons 

No. of 
epochs MSE R2 MSE R2 MSE R2 

1 8 0.017 0.89 0.007 0.063 0.004 0.47 
3 23 0.002 0.95 0.003 0.882 0.012 0.18 
4 25 0.001 0.96 0.005 0.925 0.002 0.69 
5 14 0.002 0.98 0.004 0.425 0.006 0.51 
6 19 0.000 0.95 0.004 0.898 0.001 0.98 

7 20 0.001 0.98 0.002 0.934 0.002 0.62 
8 8 0.007 0.94 0.006 0.766 0.006 0.88 
9 18 0.001 0.98 0.006 0.889 0.004 0.45 
11 15 0.001 0.98 0.004 0.447 0.005 0.92 
12 9 0.005 0.94 0.002 0.890 0.002 0.33 
13 8 0.017 0.96 0.005 0.201 0.005 0.11 
16 42 0.001 0.98 0.003 0.909 0.002 0.53 
17 11 0.003 0.95 0.002 0.208 0.015 0.82 
18 14 0.001 0.95 0.012 0.265 0.027 0.47 
19 11 0.005 0.95 0.001 0.889 0.006 0.01 
20 17 0.000 0.99 0.001 0.891 0.007 0.34 
21 7 0.006 0.95 0.008 0.558 0.007 0.90 
22 15 0.001 0.99 0.023 0.762 0.001 0.98 
24 17 0.002 0.93 0.003 0.895 0.001 0.96 
25 26 0.000 0.99 0.002 0.927 0.009 0.81 
27 14 0.001 0.99 0.002 0.566 0.004 0.90 
30 12 0.001 0.96 0.008 0.795 0.016 0.82 
31 7 0.008 0.99 0.004 0.321 0.007 0.05 
32 59 0.000 0.99 0.001 0.942 0.005 0.60 
33 15 0.000 0.99 0.002 0.451 0.005 0.84 
34 13 0.001 0.99 0.004 0.446 0.001 0.97 
36 51 0.001 0.96 0.001 0.954 0.012 0.52 
38 25 0.001 0.87 0.001 0.970 0.002 0.94 
40 12 0.001 0.99 0.000 0.408 0.003 0.87 
41 11 0.000 0.99 0.006 0.524 0.005 0.86 
43 7 0.020 0.98 0.005 0.037 0.014 0.28 
44 7 0.008 0.99 0.004 0.186 0.008 0.48 
45 10 0.001 0.99 0.005 0.740 0.009 0.33 

48 15 0.000 1.00 0.003 0.735 0.005 0.33 
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