
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:5, 2009

377

Abstract—Com Poisson distribution is capable of modeling the 
count responses irrespective of their mean variance relation and the 
parameters of this distribution when fitted to a simple cross sectional 
data can be efficiently estimated using maximum likelihood (ML) 
method. In the regression setup, however, ML estimation of the 
parameters of the Com Poisson based generalized linear model is 
computationally intensive. In this paper, we propose to use quasi-
likelihood (QL) approach to estimate the effect of the covariates on 
the Com Poisson counts and investigate the performance of this 
method with respect to the ML method. QL estimates are consistent 
and almost as efficient as ML estimates. The simulation studies show 
that the efficiency loss in the estimation of all the parameters using 
QL approach as  compared to ML approach is quite negligible, 
whereas QL approach is lesser involving than ML approach. 

Keywords—Com Poisson, Cross-sectional, Maximum 
Likelihood, Quasi likelihood 

I. INTRODUCTION

OUNT observations are encountered in various fields of 
research. Such observations may be equi, over or 
underdispersed. Poisson and Poisson-gamma (negative 

binomial) or Poisson-lognormal distributions are well 
accepted to model the equidispersed and overdispersed counts 
respectively [1,2,4,9,12,14]. However, analyzing 
underdispersed counts where the mean is much higher than 
the variance is quite a challenge. Recently, Shmueli et al. [13] 
proposed to use the Conway Maxwell Poisson (Com Poisson) 
distribution, originally developed by Conway and Maxwell 
[3], to model counts which may be equi, over and under 
dispersed. Kadane et al. [8] and Shmueli et al. [13] studied the 
basic properties of Com- Poisson distribution and the fitting of 
this distribution to over and under dispersed cross sectional 
count data. It has been pointed out that the estimation of the 
model parameters by ML method was comparatively more 
intensive than by weighted least squares (WLS) as well as 
Bayesian techniques. However, it is well known that ML 
estimates are more efficient as compared to WLS and 
Bayesian estimates.  

In the regression setup, Guikema[7] developed a Com 
Poisson generalized linear model (GLM) and studied its 
application to set up a regression model for risk analysis . 
These authors implemented a fully Bayesian estimation 
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approach based on Markov chain Monte Carlo estimation of 
the parameters. Lord et al[10] compared, in terms of goodness 
of fit statistics, the Com Poisson and negative binomial GLMs 
for analyzing motor vehicle crashes, where the estimates of 
the model parameters were based on Bayesian methods. 
According to these authors, Com Poisson GLM performs as 
well as the traditional negative binomial model when the 
counts are overdispersed but offers a better alternative when 
the counts are underdispersed. It is therefore evident that 
owing to its flexibility Com Poisson GLM can handle the 
counts subjected to either over or under dispersion. However, 
the issue of efficient estimation of model parameters should be 
taken into due consideration in order to draw valid 
conclusions from the model. ML estimation provides the most 
efficient estimates but is expected to be computationally 
intensive[6]. In this paper, we propose quasi-likelihood (QL) 
estimation technique to estimate the parameters of Com 
Poisson regression model. This technique provides 
considerably efficient estimates of all the parameters. This 
paper is divided into five sections. In the second section, a 
brief description of Com Poisson GLM is provided. The third 
section is devoted to ML estimation technique. In the same 
section, we present the QL estimation method and derive QL 
estimates. The next section provides a simulation study and 
MLEs are compared with QLEs. In section 5, we present 
comments on the simulation study and conclusion. 

II. THE COMPOISSON REGRESSION MODEL

Let iy  be the thi  count response 

( niyi ,2,1;,2,1,0 ) and ix  be the p  dimensional 

vector of covariates corresponding to iy .  Let   be the 

p dimensional vector of regression parameters such that j

( pj ,,1 ) is the regression effect of the thj  covariate on 
the responses.  The Com Poisson regression model is given 
by: 
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In equation (1),  is the dispersion parameter which 
conducts the modeling of equi, under and overdispersed count 
data.  More specifically, the values  1, 1 and 1
correspond to equi, over and under(dispersion.  Since equation 
(1) does not have closed form expressions for its moments, 
Shmueli et al. [13]  derived an asymptotic expression for 

(Z ),i  given by 

2
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Now, we reformulate the equation (1) to include regression 
effects as follows and use this expression to calculate the 
moments  
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To estimate the parameters  and , we investigate the 
maximum likelihood approach and the quasi likelihood 
techniques. In the next section, we develop the estimating 
equations for each method and use the iterative method to 
obtain estimates of the parameters   and .

III. ESTIMATION TECHNIQUES

A. Maximum Likelihood approach 
The loglikelihood function based on model (4) can be written 
as
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The derivates of the loglikelihood function with respect to 
and are obtained as 
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The maximum likelihood estimates of the regression 

parameters and the dispersion parameter are derived by the 
Newton Raphson technique and are given in equation (11). 
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where the expressions within the brackets is evaluated at 

r  and r .  For an initial vector of the regression 

parameter  0  and dispersion parameter 0 , we 
iterate the equation (11) until convergence.  The estimators are 
consistent and under mild regularity conditions, for ,n

TMlMLn )],(),[(2
1

has an asymptotic normal 
distribution.

B. Quasi likelihood approach 
In this subsection, we derive the estimates of the regression 

parameters and dispersion parameter discussed by 
Wedderburn [15] and Firth et al.[5]. This method requires 
only the first two moments of the ComPoisson distribution but 
since the distribution does not have closed form expressions 
for its moments in terms of the parameters  and ,
following Shmueli et al. [13], we use equation (4) to obtain 
the )( iYE .  Hence,
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Other moments can be obtained by using the recursive 
formula 
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Note that both i  and )( iYVar  are functions of  and .

To estimate  and , we solve the joint quasi(likelihood 
equation given by 
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the score vector if  and iD  is the )1(2 p  matrix of 
derivatives given by 
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The covariance matrix of if can be expressed as 
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where the elements in iV  are derived iteratively from the 
equation (16)
By deriving the moments for  32 , ii yy  and 4

iy  we obtain 
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Now the Newton Raphson technique can be used to obtain 
the quasi-likelihood estimates of and . Hence the QL 
estimates are given by 
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For an initial values of 0  and dispersion parameter 

0 , we iterate the equation (26) until convergence. The 
estimators are consistent and under mild regularity conditions, 
for ,n ,  it may be shown that 

TQLQLn )],(),[(2
1

has an asymptotic normal 
distribution.

IV. SIMULATION STUDY

In the simulation study, we first generate Com Poisson 
counts by using the relationship described by Shmueli et al. 
[13] 

)1()()1( iyiiYPiYP       (27)                   

where
)

1
exp(

2
1

)2(2
1

)0(

i

i
iYP

       (28)                   

Minka et al. [11] calculated the sum of these probabilities 
starting from )0( iYP  until the sum exceeds the value of a 
simulate Uniform (0,1) variable.  Using this method of 
simulation, it is remarked that for small values of , the 
Com(Poisson counts take different values between 0 and 10 
while for very large values of , the counts are repeated.  
Hence, we consider 100,60,20n  and 500 and different 
values of for small, medium and large sample sizes. Thus 
for the above choices of n , the simulation results will exhibit 
small and large sample performances of the methodology.  
For any ni 1 , the first covariate is chosen as 
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(1  (i=1,……,n/4),

1ix  = 0  (i=(n/4) + 1,…,3n/4)
 1  (i= (3nl/4) + 1,…,n)

and for the second covariate, we generate n  standard normal 
values.  For convenience, the true values of the regression 
parameters are assumed 110 . For each structure, 
1,000 simulations were run for each of the following values of   

=0.5,0.75,0.85,1,1.5,2.  The results are presented in the 
following table 

TABLE I  SIMULATION RESULTS

MLE QLE MLE QLE MLE QLE

20 0.5 1.0221 1.0256 0.9998 0.9989 0.5006 0.4997

(0.0728) (0.0733) (0.071) (0.0716) (0.0812) (0.0818)

0.75 0.9978 0.9993 1.0981 0.9997 0.7499 0.7502

(0.0822) (0.0826) (0.0699) (0.0705) (0.0792) (0.0798)

1 1.0254 1.0012 1.0025 1.0015 0.9989 0.9992

(0.0755) (0.0758) (0.0736) (0.0745) (0.0667) (0.0672)

1.5 1.001 1.001 0.9999 0.9999 1.4989 1.501

(0.0832) (0.0839) (0.0897) (0.0901) (0.0756) (0.076)

2 1.0022 0.9999 1.0005 0.9999 1.9998 1.9999

(0.0812) (0.082) (0.0881) (0.0894) (0.0692) (0.0699)

60 0.5 1.0201 1.0341 0.9945 0.9981 0.5012 0.4981

(0.0622) (0.0631) (0.0642) (0.0651) (0.0751) (0.0756)

0.75 1.0654 0.9986 1.0671 0.9992 0.7481 0.7485

(0.0718) (0.0745) (0.0666) (0.0698) (0.0778) (0.0795

1 1.011 1.0101 1.0003 0.9998 0.9895 0.9899

(0.0713) (0.0721) (0.0725) (0.073) (0.0613) (0.0628

1.5 1.0012 1.0008 0.9996 0.9999 1.4561 1.5012

(0.0824) (0.0836) (0.0888) (0.0891) (0.0723) (0.0734)

2 1.0002 0.9991 1.0003 0.9999 1.9995 1.9999

(0.0797) (0.0801) (0.0815) (0.0818) (0.0688) (0.0692)

100 0.5 0.9871 1.0561 0.9999 0.9982 0.4981 0.551

(0.0536) (0.054) (0.0401) (0.0403) (0.051) (0.0512)

0.75 0.9993 1.0012 0.9999 1.0052 0.7493 0.751

(0.0522) (0.0524) (0.0436) (0.044) (0.0601 (0.0607)

1 0.9999 1.0001 0.9999 0.9999 1.0012 0.9996

(0.0689) (0.0695) (0.0711) (0.0718) (0.0589) (0.0592)

1.5 0.9999 0.9989 0.9999 1.0021 1.5101 1.4993

(0.0718) (0.0721) (0.0801) (0.0811) (0.0677) (0.068)

2 0.9999 1.0001 0.9999 0.9999 2.001 1.9996

(0.0791) (0.0793) (0.0818) (0.082) (0.0681) (0.068)

500 0.5 0.9997 0.9999 1.0076 1.0043 0.5032 0.501

(0.0321) (0.032) (0.0385) (0.039) (0.0482) (0.049)

0.75 0.9999 0.9996 1.0001 0.9999 0.7498 0.7499

(0.0333) (0.0335) (0.0288) (0.0291) (0.0487) (0.0491)

1 1.0052 0.9999 1.0025 0.9998 0.9992 0.9995

(0.0467) (0.0431) (0.0481) (0.0485) (0.0492) (0.0497)

1.5 1.0003 0.9999 0.9997 0.9998 1.4989 1.501

(0.0667) (0.0668) (0.0592) (0.0598) (0.0515) (0.0518)

2 1.0001 0.9999 1.0008 0.9998 1.9992 1.9995

(0.0617) (0.0619) (0.0566) (0.057) (0.0498) (0.0501)

V. CONCLUSION

With small starting positive values for  and , we 
obtained the estimates of   and  under maximum 
likelihood and quasi-likelihood approaches using equations 
equation (11) and  equation (26) respectively. It is remarked 
that ML procedure is computationally very intensive as 
compared to QL method.  For n 60; 5.0  and n 100;

5.0  the ML iterative process does not converge in 45 
percent and 18 percent of the simulations respectively whereas 
the QL approach fails in only 15 percent and 10 percent of the 
simulations. As we increase the value of  to 0.75 and 0.85, 
we note that there is a slight increase in the number of 
nonconvergent simulations in the ML approach under n 60
and n 100. However, for n 500, the nonconvergence 
problems did not arise for both methods which is expected, as 
the consistency of estimators depend on large I . For values 
of  greater than 1, we found out that for n  60 and 
n 100, the ML iterative process does not converge in 55 
percent and 36 percent of the simulations respectively for the 
case with  =1.5 whereas the QL approach fails only in 20 
percent and 12 percent of simulations respectively.  Hence, 
ML procedure is far more difficult to implement as compared 
to QL procedure, especially for underdispersed data ( )1
and for small as well as medium sized samples ( 100n ).  In 
terms of efficiency as well, the performance of QL method is 
quite satisfactory.  QL approach yields almost as efficient 
estimates as provided by the ML. Even for small samples, the 
efficiency loss for the QL estimates is not more than 1 %. 
Thus, it is evident that QL technique is a better option for 
estimating the parameters of Com Poisson regression models.  
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