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Abstract—We develop a new estimator of the renewal function
for heavy-tailed claims amounts. Our approach is based on the peak
over threshold method for estimating the tail of the distribution with
a generalized Pareto distribution. The asymptotic normality of an
appropriately centered and normalized estimator is established, and
its performance illustrated in a simulation study.
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I. INTRODUCTION AND MOTIVATION

RENEWAL processes have many applications in the prac-
tice, as the warranty control, the reliability analysis of

technical systems and in telecommunication networks such
as high speed packet-switched networks like the Internet. It
is important for planning and control purposes to estimate
the related traffic load in terms of the mean numbers of
counted events and their variances in these intervals. In such
applications the renewal function (rf) constitutes the basic
characteristic of an underlying renewal process since by means
of this function the expectation of the number of arrivals of the
relevant events before a fixed time instant can be calculated.
To estimate the rf, several realizations of the counting process
may be required, e.g. the observations of the number of calls
within several days. We estimate here the rf using inter-arrival
times between events of only one realization of the process.

We will now introduce some notations in order to formulate
the problem rigorously. Let X1, X2, ...Xn be independent and
identically distributed (i.i.d) non-negative random variables
with not arithmetic distribution functions (df) F , finite means
μ, and possibly infinite variances σ2. Let

S0 = 0, Sn = X1 + ···+Xn for all n ≥ 1,

and
N(t) = max {n ≥ 0, Sn ≤ t} ,

the number of renewal before time t, let HF (t) be the renewal
function defined by

HF (t) = EN(t) =
∞∑

n=1

P (Sn < t) =
∞∑

n=1

F ∗n (t) , (1)

where F ∗k is the kth convolution of the distribution function
F . The renewal function HF (t) depends on the df F and is
therefore unknown.
Most nonparametric estimators of HF (t) have been proposed
in the literature, and we refer to.Frees [8], Schneider et al.

[15], Grübel and Pitts [7], Markovitch and Krieger [11], and
references therein.
When the mean and the variance of the df of F are finites,
Feller [5], shown that

HF (t)− t

μ
∼ σ2 + μ− μ2

2μ2
as t → ∞. (2)

Sgibnev [17] has proved that when E[X2] = ∞, then

HF (t)− t

μ
∼ 1

μ2

∫ t

0

(∫ ∞

y

F (x)dx

)
dy, (3)

when t → ∞, where F = 1 − F is the survival function.
Bebbington, Davydov and Zitikis [2] explore an large sample
to proposed an empirical estimator of HF (t) as follow.

H̃F (t) =
t

X
+

1

X
2

(
1

2n

n∑
i=1

(Xi ∧ t) +
t

n

n∑
i=1

(Xi −Xi ∧ t)

)
,

(4)
where the X is the empirical mean of μ. The estimator
H̃F (t) is good to use when we are not willing to assume any
assumption on the tail of F , that is, we work in a completely
non-parametric situation.
In this paper, we are interested in the renewal function HF (t)
of the tail of F are described by heavy-tailed distributions.
Our estimation procedures are based on the result of Balkema
and de Haan (1974) and Pickands (1975), that is, the distribu-
tion of excess Ft over a threshold t, are approximated by the
GPD function, in the sense that

sup
y>0

|Ft(y)− Gξ,β(y)| = O(t−δL(t)), as t → ∞, (5)

where t−δL(t) → 0, for any δ > 0. Moreover, under
suitable assumptions, we study the asymptotic behavior of this
estimator.

The remainder of this paper is organized as follows. In section
2, we introduice some assumptions on the regular variation
distribution, the GPD’s approximation and the well known
POT method and the mean of an heavy-tailed distribution The
estimation of renewal function and the limiting behavior of
the proposed estimator are given in Section 3. In section 4,
we are presents some simulation results showing the results of
previous sections. Finally, the proofs of our results are given
in Section 5.
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II. MAIN ASSUMPTIONS, NOTATIONS, AND THE POT
METHOD

A. Distribution functions

We deal only with losses X that are heavy tailed. More
specifically, we work within the class of of regularly varying
cdf’s. This class includes such popular distributions as Pareto,
Burr, Student, Lévy-stable, log-gamma, among many others
known to be appropriate models for fitting large insurance
claims, large fluctuations of prices, log-returns, etc. (e.g., Beir-
lant et al., 2001). For more details on this type of distributions,
we refer, for example, to Bingham et al. (1987) and Rolski et
al. (1999). Namely, the tail of cdf F is said to be with regulary
varying at infinity, that is

F (x) = cx−1/ξ
(
1 + x−δL(x)

)
when x → ∞, (6)

for ξ ∈ (0, 1), δ > 0 and some real constant c, where L a
slowly varying function.

B. The POT Method

Let X1, ..., Xn be a i.i.d r.v.’s with the same cdf F , and let
tn be some a large number, ‘high level,’ which we later let
tend to infinity when n → ∞. With the notation

F tn(t) = P[X1 − tn > y | X1 > tn],

we have, F tn(y) = F (tn + y)/F (tn) and thus

F tn(y) =

(
1 +

y

tn

)−1/ξ
1 + (tn + y)−δL (tn + y)

1 + t−δ
n L (tn)

. (7)

Upon recalling the definition of the generalised Pareto dis-
tribution, we have that, for all parameter values β > 0 and
ξ > 0,

Gξ,β(y) = 1−
(
1 + ξ

y

β

)−1/ξ

, 0 ≤ y < ∞, (8)

we see that, the right-hand side of equation (7) is a perturbed
version of Gξ,β(y), with the notation β = tnξ. Balkema
and de Haan (1974) , and Pickands (1975) have shown that
Ftn is approximated by a generalized Pareto distribution GPD
function Gξ,β with shape parameter ξ ∈ R and scale parameter
β = β (tn), in the following sense:

sup
y>0

|Ftn(y)− Gξ,β(y)| = O(t−δ
n L(tn)), (9)

where, for any δ > 0, we have t−δ
n L(tn) → 0 when tn → ∞.

Approximation (9) suggests to define an estimator of F tn(y)
as follows:

F̂ tn(y) = G
̂ξn,̂βn

(y), (10)

for appropriate estimates ξ̂n and β̂n of ξ and β, respectively.
Note that β will be estimated separately, i.e. β = ξtn will not
be used. The reason for this is to achieve greater flexibility
in the parameter fitting, compensating for the underlying
distribution not being an exact GPD. Theorem 3.2 in Smith

[18] gives us the asymptotic distribution of the tail parameters(
ξ̂n, β̂n

)
as

√
npn

(
β̂n/β − 1

ξ̂n − ξ

)
D−→ N2

(
0,Σ−1

)
when n → ∞,

(11)
provided that

√
npnt

−δ
n L(tn) → 0 when n → ∞ and the

function x 
→ x−δL(x) is non-increasing for all sufficiently
large x, where

Σ−1 = (1 + ξ)

(
2 −1
−1 1 + ξ

)
. (12)

We note that when
√
npnt

−δ
n L(tn) � 0, then the limiting

distribution in (11) is biased.
Next, we define an estimator of F (tn). For this, let N ≡

N(tn) be defined by

N = # {Xi : Xi > tn : 1 ≤ i ≤ n } ,
which is the number of those Xi’s that exceed tn. Since N fol-
lows the binomial distribution Bin(pn, n) with the parameter
pn = P[X1 > tn], which is equal to F (tn), we have a natural
estimator of F (tn) defined by p̂n = N

n . From the definition
of F tn(y) we have F (tn + y) = F (tn)F tn(y). Hence, with
the above defined estimators for F tn(y) and F (tn), we have
the following estimator of F (tn + y):

F̂ (tn + y) = F̂ (tn)F̂ tn(y) = p̂nG
̂ξn,̂βn

(y). (13)

C. Estimating of the Mean

For ξ ∈ (0, 1/2] , X1 has finite variance, in this case μ =
EX1 is naturally estimated by the sample mean X = 1

n (X1+
X2 + ...+Xn), which by the Central Limit Theorem ( TCL)
is asymptotically normal. Whereas for ξ ∈ (1/2, 1) , X1 has
infinite variance and therfore the TCL is not valid anymore.
This case is frequently met in real insurance data ( see for
instance, Beirlant et al, 2001).
An alternative way to estimate μ may be made by GPD’s
approximation ( see Johansson [8]).
Indeed, for each n ≥ 1, we have

μ =

∫ tn

0

vdF (v) +

∫ ∞

tn

vdF (v) = μ∗
n + τ∗n,

an empirical estimator of μ∗
n by using the empirical distribu-

tion

μ̂∗
n =

1

n

n∑
i=1

Xi1{Xi≤tn},

here 1K denotes the indicator function of set K, and an
estimator of τ∗n by using the GPD distribution and after
integrate, we obtain

τ̂∗n = p̂n

(
tn +

β̂n

1− ξ̂n

)
.

Finally, the estimator of the mean μ is

μ̂n =
1

n

n∑
i=1

Xi1{Xi≤tn} + p̂n

(
tn +

β̂n

1− ξ̂n

)
. (14)
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III. THE NEW ESTIMATOR AND THE MAIN RESULT

Next, with the representation of the double integral∫ tn

0

∫ ∞

s

F (v)dvds (15)

=

∫ tn

0

vF (v)dv + tn

∫ ∞

tn

F (v)dv

=
t2n
2
F (tn) +

1

2

∫ tn

0

v2dF (v) + tn

∫ ∞

tn

F (v)dv,

since Fn(x) =
1
n

∑n
i=1 1{Xi≤x} is an empirical estimate of F,

and G
̂ξn,̂βn

is an estimator of the tail of distribution F , with
a simple integrate, we obtain the corresponding estimator for
HF (tn) as follows

Ĥn(tn) =
tn
μ̂n

+
tn
μ̂2
n

[
tn
2
p̂n +

1

2ntn

n∑
i=1

X2
i 1{Xi≤tn} +

p̂nβ̂n

1− ξ̂n

]
.

(16)
The consistency and asymptotic behavior of Ĥn(tn) is estab-
lished in the following theorems.

Theorem 1: Let F be a df fulfilling (6) with ξ ∈ (1/2, 1).
Suppose that L is locally bounded in [x0,+∞) for x0 ≥ 0
and x → x−δL (x) is non-increasing near infinity, for some
δ > 0. For any tn = O(nαξ/4) with α ∈ (0, 1) , we have

Ĥn(tn)−HF (tn) = oP (1) , as n → ∞.

Theorem 2: Let F be as in theorem (1). Then, for any tn =
O(nαξ/4) with α ∈ (4/ (1 + 2ξδ) , 1) , we have

√
n

tnσn

(
Ĥn(tn)−HF (tn)

) D→ N (0, 1) , as n → ∞,

where

σ2
n = γ2

nθ
2
1 + pn (1− pn)

(
θ2 + θ1

(
tn +

βn

1− ξ

))2

+
(1 + ξ)

2

pn

(
θ3 + θ1

pnβn

(1− ξ)
2

)2

+
2 (1 + ξ)β2

n

pn

(
θ4 + θ1

pn
1− ξ

)2

− (1 + ξ)βn

pn

(
θ3 + θ1

pnβn

(1− ξ)
2

)(
θ4 + θ1

pn
1− ξ

)
,

with

θ1 = −
(

1

μ3

)(
μ+ pntn +

1

tn
E(X21{X1≤tn} +

2pnβn

(1− ξ)

)
θ2 =

(
1

μ2

)(
tn
2

+
βn

(1− ξ)

)
, θ3 =

1

μ2

pnβn

(1− ξ)
2 ,

θ4 =
1

μ2

pn
(1− ξ)

,

where βn = tnξ, pn = F (tn) and γ2
n = Var

(
X11{X1≤tn}

)
.

IV. SIMULATION STUDY

As an example for simulated the renewal function, we
consider a random variable X with standard Pareto df

F (x) = x−1/ξ, x ≥ 1,

and the selected threshold tn. We generate 200 independent
replicates of sizes 500, 1000 and 2000 from the selected parent
distribution with values index ξ = 2/3 and ξ = 3/4. Using
the R program package evir, for made a differents estimates of
the renewal function. The overall estimated renewal function
is then taken as the empirical mean of the values in the 200
repetitions. To this end, and in all cases, we calculate the bias
and the root mean square error (rmse). We summarize the
results in the Table (I).

TABLE I
POINT ESTIMATES OF THE RENEWAL FUNCTION BASED ON 200

SAMPLES OF PARETO-DISTRIBUTED RV’S WITH TAIL INDEX 2/3
AND 3/4.

ξ 2/3 3/4
HF 2.222 1.709
n ̂Hn(tn) rmse bias ̂Hn(tn) rsme bias
500 2.296 0.307 0.074 1.749 0.368 0.041
1000 2.256 0.267 0.034 1.657 0.258 -0.039
2000 2.237 0.231 0.015 1.671 0.247 -0.036

V. PROOFS

The following proposition will be instrumental for our
needs.

Proposition 3: Let F be a distribution fonction not arith-
metic and fulfilling (6) with ξ ∈ (0, 1) , δ > 0 and some
real c. Suppose that L is locally bounded in [x0,+∞) for
x0 ≥ 0. Then for n large enough, for any tn = O

(
nαξ/4

)
with α ∈ (0, 1) , we have

pn = P(X1 > tn) = c(1 + o(1))n−α/4,

γ2
n = Var(X11{X1≤tn} = O(n(α/2)(ξ−1/2)),

and √
npnt

−δ
n L (tn) = O

(
n−α/8−αξδ/4+1/2

)
.

Proof of the proposition: We will only prove the second
result, the other ones are straightforward from (6) . Let x0 > 0
be such that F (x) = cx−1/ξ

(
1 + x−δL (x)

)
, for x > x0,

then for n large enough, we have

EX11{Xi≤tn} =

∫ tn

0

xdF (x) =

∫ x0

0

xdF (x)+

∫ tn

x0

xdF (x).

Recall that μ < ∞, hence
∫ x0

0
xdF (x) < ∞. Making use of

the proposition assumptions, we get

E
(
X11{Xi≤tn}

)
= O (1) ,

and

E
(
X2

11{Xi≤tn}
)
= O

(
t
2− 1

ξ
n

)
,

and therefore
γ2
n = O(n(α/2)(ξ−1/2)).
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This achieves the proof of the proposition.
Proof of theorem 1: Let

Dn (tn) = Ĥn(tn)−HF (tn),

then

Dn (tn) =

[
tn
μ̂n

− tn
μ

]
+

tn
μ̂2
n

[
tn
2
p̂n +

1

2ntn

n∑
i=1

X2
i 1{Xi≤tn} +

p̂nβ̂n

1− ξ̂n

]

− 1

μ2

∫ tn

0

∫ ∞

s

F (v)dvds.

Using the representation∫ tn

0

∫ ∞

s

F (v)dvds =

∫ tn

0

vF (v)dv + tn

∫ ∞

tn

F (v)dv

=

[
u2
n

2
pn +

1

2
E
(
X21{X1≤tn}

)]
+ tn

∫ ∞

tn

F (v)dv.

Therefore
1

tn
Dn (t) = Δn,1 +Δn,2 +Δn,3

where

Δn,1 = − 1

μμ̂n
(μ̂n − μ) ,

Δn,2 =
1

2μ̂2
n

(
tnp̂n +

1

tnn

n∑
i=1

X2
i 1{X1≤tn}

)

− 1

2μ2

(
tnpn +

1

tn
E
(
X21{X1≤tn}

))
,

Δn,3 =
1

μ̂2
n

p̂nβ̂n

1− ξ̂n
− 1

μ2

∫ ∞

tn

F (v)dv.

First, we show that Δn,1
P→ 0 as n → ∞, we have from

Johansson (2003)

μ̂n − μ = O

(
γn√
n

)
, as n → ∞. (17)

By the proposition, we have γ2
n = O

(
n(α/2)(ξ−1/2)

)
, then

μ̂n − μ = O
(
n(α/4)(ξ−1/2)−1/2

)
= oP (1) as n → ∞.

It follows that

− 1

μμ̂n
(μ̂n − μ) = oP (1) as n → ∞.

On the other hand, Δn,2 may be rewrite as follows

Δn,2 =
tn
2μ̂2

n

(p̂n − pn)

−
(
pntn
2

+
1

2tn
E(X21{X1≤tn}

)(
μ̂n + μ

μ2μ̂2
n

)
(μ̂n − μ)

+
1

2tnμ̂2
n

(
1

n

n∑
i=1

X2
i 1{X1≤tn} −E(X21{X1≤tn}

)
.

Moreover, we have

p̂n − pn = OP

(√
pn/n

)
as n → ∞, (18)

then by the proposition, we have p̂n − pn = O
(
n−α/8−1/2

)
and

tn (p̂n − pn) = O
(
n(α/4)(ξ−1/2)−1/2

)
= oP (1) as n → ∞,

further

pntn (μ̂n − μ) = O
(
n(α/4)(2ξ−3/2)−1/2

)
= oP (1) as n → ∞.

The value of 1
n

∑n
i=1 X

2
i 1{X1≤tn}−E(X21{X1≤tn} is finite.

Then we infer that Δn,2
P→ 0 as n → ∞. Finally, we have

Δn,3 =
1

μ2

(
pnβn

1− ξ
−
∫ ∞

tn

F (v)dv

)
+

(
1

μ̂2
n

p̂nβ̂n

1− ξ̂n
− 1

μ2

pnβn

1− ξ

)
,

where∫ ∞

tn

F (v) dv =
pnβn

1− ξ

(
1− t−δ

n L (tn) +O
(
t−δ
n L (tn)

)) (
1 +O

(
t−δ
n

))
=

pnβn

1− ξ

[
1− t−δ

n L (tn) +O
(
t−δ
n L (tn)

)]
,

then

1

μ2

(
pnβn

1− ξ
−
∫ ∞

tn

F (v)dv

)
→ 0 as n → ∞.

On the other hand, we may rewrite

1

μ̂2
n

p̂nβ̂n

1− ξ̂n
− 1

μ2

pnβn

1− ξ
= −pnβn

1− ξ

(
μ̂n + μ

μ2μ̂2
n

)
(μ̂n − μ)

+
1

μ̂2
n

βn

(1− ξ)
(p̂n − pn)

+
1

μ̂2
n

p̂n
(1− ξ)

(
β̂n − βn

)
+

1

μ̂2
n

⎛⎝ p̂nβ̂n

(1− ξ)
(
1− ξ̂n

)
⎞⎠(ξ̂n − ξ

)
.

where βn = tnξ, then we have shown that

pnβ (μ̂n − μ) = oP (1) as n → ∞,

too

β (p̂n − pn) = O
(
n(α/4)(ξ−1/2)−1/2

)
= oP (1) as n → ∞.

Moreover, from Smith (1987) we have as n → ∞
β̂n/β = 1 +OP

(
t−δ
n L (tn)

)
and ξ̂n − ξ = OP

(
t−δ
n L (tn)

)
.

(19)
Then

p̂n

(
β̂n − β

)
= O

(
n−α/4−αξδ/4

)
= oP (1) as n → ∞,

and

p̂nβ̂n

(
ξ̂n − ξ

)
= O

(
n−α/4−αξδ/2

)
= oP (1) as n → ∞.
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Finally, we infer that Δn,3
P→ 0 as n → ∞. Therefore

Ĥn(tn)−HF (tn) = O(n(α/2)(ξ−1/4)−1/2) = oP (1) as n → ∞,

because (α/2) (ξ − 1/4)− 1/2 < 0.

Proof of Theorem 2: In proof of theorem 1 we have
shown that Ĥn(tn) = HF (tn)+oP (1) . It follows that, for all
large n, {Δn,i}i=1,3 may be rewritten into

Δn,1 = − 1

μ2
(1 + oP (1)) (μ̂n − μ) ,

Δn,2 =
tn
2μ2

(1 + oP (1)) (p̂n − pn)

− pntn
μ3

(1 + oP (1)) (μ̂n − μ)

− 1

μ3tn
E(X21{X1≤tn} (1 + oP (1)) (μ̂n − μ) ,

and

Δn,3 = − 2pnβ

(1− ξ)μ3
(1 + oP (1)) (μ̂n − μ)

+
1

μ2

β

(1− ξ)
(1 + oP (1)) (p̂n − pn)

+
1

μ2

pn
(1− ξ)

(1 + oP (1))
(
β̂n − β

)
+

1

μ2

pnβ

(1− ξ)
2 (1 + oP (1))

(
ξ̂n − ξ

)
.

Therefore

1

tn
Dn (t) = Δn,1 +Δn,2 +Δn,3.

Then

√
n

tn
Dn (t) = θ1 (1 + oP (1))

√
n (μ̂n − μ)

+ θ2 (1 + oP (1))
√
n (p̂n − pn)

+ θ3 (1 + oP (1))
√
n
(
ξ̂n − ξ

)
+ θ4 (1 + oP (1))

√
n
(
β̂n − β

)
.

where {θi}i=1,4 are those defined in Theorem 2. On the other
hand, from Johansson (2003), we have

√
n (μ̂n − μ) =

√
n (μ̂∗

n − μ∗
n)

+

(
tn +

β

1− ξ

)√
n (p̂n − pn)

+
pnβ

(1− ξ)
2

√
n
(
ξ̂n − ξ

)
+

pn
1− ξ

√
n
(
β̂n − β

)
+ oP (γn)

This enables us to rewrite, as n → ∞,
√
n

tn
Dn (t) into

√
n

tn
Dn (t)

= θ1 (1 + oP (1))
√
n (μ̂∗

n − μ∗
n)

+ (1 + oP (1))

(
θ2 + θ1

(
tn +

β

1− ξ

))√
n (p̂n − pn)

+

(
θ3 + θ1

pnβ

(1− ξ)
2

)
(1 + oP (1))

√
n
(
ξ̂n − ξ

)
+ (1 + oP (1)

(
θ4 + θ1

pn
1− ξ

)√
n
(
β̂n − β

)
+ oP (γn) .

Then√
n

tnγn
Dn (t)

= θ1 (1 + oP (1))

√
n

γn
(μ̂∗

n − μ∗
n)

+ (1 + oP (1))

(
θ2 + θ1

(
tn +

β

1− ξ

)) √
n

γn
(p̂n − pn)

+

(
θ3 + θ1

pnβ

(1− ξ)
2

)
(1 + oP (1))

√
n

γn

(
ξ̂n − ξ

)
+ (1 + oP (1)

(
θ4 + θ1

pn
1− ξ

) √
n

γn

(
β̂n − β

)
+ oP (1) ,

where γ2
n is defined in the Proposition.

We observe that,
√
n

tnγn
Dn (t) may be rewriten as follows

√
n

tnγn
Dn (t)

= θ1 (1 + oP (1))W1

+ (1 + oP (1))

√
pn (1− pn)

γn

(
θ2 + θ1

(
tn +

β

1− ξ

))
W2

+
(1 + ξ)

γn
√
pn

(
θ3 + θ1

pnβ

(1− ξ)
2

)
(1 + oP (1))W3

+ (1 + oP (1))
β
√

2 (1 + ξ)

γn
√
pn

(
θ4 + θ1

pn
1− ξ

)
W4 + oP (1) .

where (Wi)i=1,4 are standard normal rv’s with E [WiWj ] =
0 for every i, j = 1, ..., 4 except

E [W3W4] = − 1√
2 (1 + ξ)

.

From Lemma A-2 of Johansson 2003, under the assymptions
of theorem 1, for any real numbers, s1, s2, s3 and s4, we have

E

⎡⎢⎢⎣exp
⎧⎪⎪⎨⎪⎪⎩

is1
√
n

γn
(μ̂∗

n − μ∗
n) + i

√
npn (s2, s3)

(
β̂n/β − 1

ξ̂n − ξ

)
+is4

√
n(p̂n−pn)√
pn(1−pn)

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

→ exp

{
−s21

2
− 1

2
(s2, s3)Σ

−1

(
s2
s3

)
− s24

2

}
(1 + oP (1)) ,

as n → ∞, where Σ−1 is that in (12), γ2
n =

Var(X11{X1≤tn}) and i2 = −1. It follows that, with this
result that√

n

tnγnσn

(
Ĥρ,n −Hρ

) D→ N (0, 1) , as n → ∞,
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with ρ2n = Var
( √

n
tnγn

Dn (t)
)
, we have

ρ2n = θ21 +
pn (1− pn)

γ2
n

(
θ2 + θ1

(
tn +

β

1− ξ

))2

+
(1 + ξ)

2

pnγ2
n

(
θ3 + θ1

pnβ

(1− ξ)
2

)2

+
2 (1 + ξ)β2

pnγ2
n

(
θ4 + θ1

pn
1− ξ

)2

− (1 + ξ)β

pnγ2
n

(
θ3 + θ1

pnβ

(1− ξ)
2

)(
θ4 + θ1

pn
1− ξ

)
,

where σ2
n = γ2

nρ
2
n.This completes the proof of Theorem 2.
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