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Abstract—This paper presents an algorithm to estimate the 
parameters of two closely spaced sinusoids, providing a frequency 
resolution that is more than 800 times greater than that obtained by 
using the Discrete Fourier Transform (DFT). The strategy uses a 
highly optimized grid search approach to accurately estimate 
frequency, amplitude and phase of both sinusoids, keeping at the 
same time the computational effort at reasonable levels. The 
proposed method has three main characteristics: 1) a high frequency 
resolution; 2) frequency, amplitude and phase are all estimated at 
once using one single package; 3) it does not rely on any statistical 
assumption or constraint. Potential applications to this strategy 
include the difficult task of resolving coincident partials of 
instruments in musical signals. 

Keywords—Closely spaced sinusoids, high-resolution parameter 
estimation, optimized grid search. 

I. INTRODUCTION

HE problem of estimating the parameters of sinusoidal 
signals has been intensively studied for many decades due 

to its importance in many practical situations. A few examples 
of applications are transient disturbance in power systems; 
channel prediction in communications; estimation of direction 
of arrival in radar and sonar; audio, speech and image 
processing; condition monitoring of engineering structures 
and systems; and nuclear magnetic resonance. 

As a result of such a scenario, there is a huge amount of 
literature treating aspects ranging from the proposition of 
estimation methods to the development of performance 
bounds, analysis of accuracy and computational effort.  

This paper deals with just one kind of sinusoidal estimation 
problem: the simultaneous estimation of amplitude, frequency 
and phase of two sinusoids with extremely close frequencies 
and using only one set of observations (just one snapshot). 
Although this particular problem also has significance in a 
variety of applications, the background motivation here is the 
complete identification of all sinusoids present in small pieces 
of musical signals, aiming applications such as the single 
channel source separation problem [1]. 

Signals produced by many musical instruments exhibit 
strong local periodicities modeled as a sum of harmonically 
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related sinusoids. Since most songs are played by 
simultaneous harmonically related instruments, there may 
exist sinusoidal components almost coincident in frequency 
for a certain period of time. Such situation can occur in two 
main cases: 1) when two instruments play the same note, the 
fundamental frequency component and corresponding partials 
probably have very closely spaced frequencies; 2) if the 
instruments play harmonically related notes, then the nearly 
coincident frequencies can occur at some harmonic 
components. Exact spectral coincidence is highly unlikely due 
to different characteristics of instruments and musicians, and, 
if it occurs, it will last just for a few milliseconds. Therefore, 
any algorithm aiming to separate the signal of each instrument 
must deal with sinusoids with very close frequencies. 

It is worth noting that estimating all three sinusoidal 
parameters is paramount for many musical signal processing 
tools, because the human perception of a song is usually 
closely linked to the way different sources and their respective 
partials interact, and such an interaction strongly depends on 
those parameters. 

Even for this particular sinusoidal estimation problem there 
are several estimation methods which can be classified in a 
number of ways depending on their theoretical supports. One 
possible way to classify such methods into categories is 
presented next, together with some of related work: 1- 
correlation-based techniques [2-7]; 2- methods derived from 
the maximum likelihood function [8-15]; 3- methods based on 
rational models [4-6,16,17]; methods based on subspace 
properties [18-28]; algorithms that use spectral properties or 
filtering [5,13,14,17,29-36];  least squares-based methods 
[37,38] and so on. Many of those propositions also use 
iterative or adaptive procedures [7,8,30]. Finally, there are 
some papers that test and compare a variety of methods [39-
42]. 

All those propositions have good performance for certain 
conditions in which their underlying assumptions hold, but 
they may fail when facing some specific conditions such as, 
for example, extremely closely spaced frequencies and/or 
limited number of observations. 

In this context, this work presents the development of a new 
strategy to estimate the parameters of two sinusoids under the 
conditions aforementioned. The basic idea is to define a fine 
grid of points in the 6-dimensional parameter space (six 
parameters) and to compose a two-sinusoid mathematical 
model for each point. The choice of the best point is carried 
out by comparing the waveform corresponding to each model 
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with the observed data via least-square errors (LSE). Both the 
grid search and the LSE criterion were chosen because they 
are not restricted by any statistical assumption.  

As the conventional grid search approach is usually very 
costly in computational terms, a number of sinusoidal 
properties and a carefully guided search were developed in 
order to make the algorithm almost one million times faster 
than the conventional unaltered grid search. The proposed grid 
search uses an intermediary step to estimate the best single-
sinusoid approximation to the two-sinusoid target. The 
parameters of this optimum intermediary estimation determine 
an appropriate initial condition for the 6-dimensional grid 
search. Moreover, the single approximation is realized in a 
fast way using trained data, and a number of sinusoidal 
properties speed up the main grid search.  

Although the proposed grid search is much faster than the 
conventional unaltered one, real-time implementations are still 
not possible given the average computational resources 
currently available, but such a relatively high computational 
effort is compensated by the great accuracy and broad 
applicability of the algorithm. 

The proposal can be applied to a variety of practical 
problems. However, the scenario adopted here to present the 
technique is based in a future application in music processing. 
Accordingly, the signal sampling frequency is 48 kHz, the 
signal frequencies can vary from 50 Hz to 10 kHz and the 
target minimum frequency resolution is 0.05 Hz. A good time 
resolution for the intended application is achieved by using 
25-ms analysis frames. This length is small enough to avoid 
excessive intra-frame sinusoidal parameter variations, which 
is important when dealing with signals whose parameters tend 
to fluctuate within a short time. It is also worth noting that 
applying a DFT to an excerpt of 25-ms length would result in 
a frequency resolution of about 40 Hz, which is 800 times 
worse than that desired here. The target amplitude resolution 
is 0.5% of the maximum amplitude (normalized to 1) and the 
target phase resolution is /200 radians.  The target resolutions 
together with the parameter ranges determine the grid of 
points in the 6-dimensional parameter space. 

The performance of the proposed algorithm was assessed 
for a wide range of parameter values, achieving good 
accuracy, especially at low noise levels. The performance 
could not be compared with the Cramer-Rao lower bound 
(CRLB) and other estimation methods due to a number of 
reasons to be discussed in Section 3. 
The paper is organized as follows. Section 2 describes the 
algorithm and the properties explored in order to get faster 
executions. Tests and results are presented in Section 3. 
Finally, Section 4 presents the conclusions and final remarks.  

II. THE PROPOSED ALGORITHM

Figure 1 shows the general structure of the proposed 
algorithm, and each block is described in the following. As 
commented before, all procedures described from this point to 
the end of the paper will be applied over 25-ms analysis 

frames. Although such a value is appropriate for most types of 
signals, it can be easily changed to meet any application 
characteristics.

Fig. 1  Algorithm general structure.

A. Filtering 
Because the proposed algorithm deals with only two 

sinusoids, an initial spectral selection must be done before 
starting the estimation procedures. There are a number of 
ways to determine the spectral band of interest. If the two 
target sinusoids are expected to be relatively isolated from 
other significant spectral components, very simple procedures 
can be adopted. However, if they are located in a populated 
area of the spectrum, more sophisticated procedures may be 
necessary. Since the main scope of this work is to provide a 
tool to discriminate very close sinusoids, and not to deal with 
tools to clean up the surrounding spectrum, it was assumed 
that the sinusoids of interest are at least fs/N Hz apart from any 
other non-noise spectral component, where fs is the sampling 
rate and N is the number of samples in a frame. Such an 
assumption allows using here a conventional band-pass filter 
and a simple procedure to determine the cut-off frequencies: a 
DFT is calculated, and the peaks provide a rough estimate of 
the central spectral location of the desired sinusoids (fc); the 
filter cut-off frequencies are chosen as fc ± fs/N. The filter used 
here is a second-order band-pass Butterworth. A narrower and 
sharper filter was avoided at this moment because the rough 
estimate provided by the DFT would not guarantee that the 
pass-band includes the sinusoids. More sophisticated 
procedures to improve the first frequency estimate and to 
determine the cut-off frequencies are one of the topics to be 
studied in a future research. 

B. Grid Search Approach 
Let the model for the observed data be   

1 2
1 2 2 2

2 2( ) sin sin ( )x x
x x x x

s s

f n f nX n A A r n
f f

    (1) 

where A1x , A2x, f1x, f2x, 1x and 2x are the true sinusoid 
parameters to be estimated,  fs is the sampling frequency, r(n)
is additive Gaussian noise, n = 1, 2, …, N, and N is the 
number of samples in a frame. 

Let S be the sum of two closely spaced sinusoids as given 
by 

1 2
1 1 2 2

2 2sin sin
s s

f n f nS n A A
f f

  ,            (2) 

whose parameters A1, A2, f1, f2, 1 and 2 must be adjusted to 
best fit X(n), n=0, 1, …, N, in the Least-Squares Error (LSE) 
sense.

The following parameter range constraints were adopted in 
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this work: 
- A1 and A2 vary in the interval (0 , 1] and the ratio  = 

A2/A1 lies in the interval [0.1 , 10]; 
- f1 and f2 vary in the interval [50 , fs/2]; 
- 1 and 2 vary in the interval [0 , 2 ).
The basic idea of the proposed algorithm is to estimate the 

parameters of S in (2) by means of a grid search. This kind of 
approach uses discrete values for all the parameters along with 
their respective ranges, and tests all the resulting points in the 
6-dimensional parameter space to determine which one best 
satisfies the LSE optimization criterion. The criterion adopted 
here is: 1- the noise free version of S(n) in (2) is calculated at 
each grid point; 2- the best grid point is the one that minimizes 
the quadratic error  . 

The 6-D grid space is composed of 480,000 frequency 
points, 400 phase points and about 200 amplitude points for 
each sinusoid. Such a number of points to be tested makes the 
conventional grid search approach prohibitive, and a strongly 
optimized search procedure must be developed. As will be 
seen along this section, the following measures were taken in 
order to reduce the computational complexity by a factor of 
one million: 1- an intermediary step based on the estimation of 
a single sinusoid was developed, which significantly narrows 
down the set of candidate points; 2- candidate testing is 
performed by using a smart grid search; 3- final refinements 
are introduced aiming some special situations. Next 
subsection describes the intermediary single sinusoid step.

C. Single Sinusoid Estimate 
The optimized grid search is preceded by an intermediary 

step in which the algorithm determines the best single 
sinusoidal approximation to the available data in the LSE 
sense. As will be shown in the following, by adequately 
exploring the information provided by this optimum single 
sinusoid, the search for the best S(n) can be greatly optimized. 
The underlying idea here is to deal with a simpler estimation 
problem, determining the parameters of just one sinusoid. The 
parameters of this best single sinusoidal approximation can be 
determined in a fast way, and provide a good starting point for 
the grid search associated to the two-sinusoid estimation 
problem. 

In order to describe this intermediate step, consider X(n) in 
Equation 1 for some given sinusoidal parameters values and 
r(n) = 0 . Suppose that the corresponding X(n) is scaled to a 
certain level (see Equation 2) and that a single sinusoid Sv(n)
is used to approximate X(n) in the LSE sense. It is 
straightforward to verify that for each value of n the square 
error between X(n) and the corresponding sample of any 
single sinusoidal approximation depends only on the 
frequency difference ( fx = f2x - f1x), phase difference ( x = 

2x - 1x), and amplitude ratio ( x = A2x/A1x) between the two 
sinusoids of X(n). Therefore, the best LSE approximation Sv

will also depend only on those three parameters. Moreover, 
those three parameters ( fx, x and x) also univocally 
determine the distance d in Hz between the frequency fv 
associated to Sv and the mean frequency fm = (f1x + f2x)/2. Such 

a distance will be positive if fv > fm, and negative otherwise. 
Therefore, the parameters of the optimum single sinusoid 
contain information about the parameters to be estimated and 
that information will speed up the grid search for the two-
sinusoid problem. 

In order to reduce the computational effort to estimate the 
single sinusoid, a kind of training procedure is carried out 
previously. The training consists in calculating and storing the 
LSE of such single sinusoidal approximation for a large 
number of possible combinations of frequency differences, 
phase differences and amplitude ratios in X(n) in the absence 
of noise. The corresponding LSE are stored in a 3-D matrix 
M, which can be used later as a lookup table whose 
information can greatly narrow down the search space in the 
final part of the algorithm. The corresponding d values are 
also stored in the matrix F. It worth mentioning that the 
matrices M and F have to be determined just once for the 
parameter ranges employed here. If another application 
demands wider ranges, one just needs to determine the new 
values and add them to the matrices. Accordingly, if narrower 
ranges are enough, the size of the matrices can be reduced. 

In this work, the normalized frequency difference ranges 
from 0 to /600 (40 Hz for fs = 48 kHz), with a /480000 step 
(0.05 Hz for fs = 48 kHz); the phase difference ranges from 0 
to 2  with a /200 step; and the amplitude ratio ranges from 
0.1 to 10 with varying steps (smaller for small ratios). The 
resulting M matrix has a dimension of 800 × 400 × 500. Such 
setting is only a suggestion and can be freely changed 
according to the desired application and available 
computational resources. The corresponding F matrix 
containing the distances between fv and fm is also stored; F
has the same dimension of M. The way M and F are used is 
explained in Section 2.4.  

After all these considerations, the intermediary estimation 
step can now be described from the beginning. After filtering 
the data to be analyzed, the algorithm performs a level scaling 
given by 

0.5
2

1

2ˆ
N

n
X n X n X n

N
 ,            (3) 

 where is the scaled version of X. This scaling aims to 
eliminate the need for estimating the amplitude of the single 
sinusoid, which is made equal to 1. This is possible because 
the scaled amplitude matches the level of a single sinusoid 
with amplitude A = 1 (absolute power level = 0.5). Since the 
single sinusoid amplitude is fixed, only the frequency and 
phase of Sv have to be determined. 

The easiest way to determine Sv (under an implementation 
point-of-view) would be the pure brute force approach, in 
which all possible frequencies and phases for the single 
sinusoid would be tested. However, a much faster and equally 
effective approach is possible by exploiting some 
characteristics of the search, as described in the following 
steps:

1) The candidate frequency ft of the approximation sinusoid 
is forced to vary only from fc - fs/1000 to fc + fs/1000, with step 
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of 10-6×fs Hz (fc is the central spectral location determined by 
the initial filtering). Tests revealed that this range contains the 
actual fv in more than 99.9 % of the cases. 

2) Initially, ft is fixed to fc - fs/1000, and the phase is varied 
along its entire range. The phase t associated to ft that results 
in the lowest LSE is stored in the temporary vector p, together 
with the corresponding LSE value itself; all of them are also 
stored in the best candidate vector b.

3) The next ft is considered, but instead of testing the entire 
phase range, only the phase values in the range t – /100 to t

+ /100 are tested. This is because the best phase does not 
vary much from one ft to the next. However, if the step for ft is 
greater than 10-4×fs Hz, this rule tends to fail, and a phase 
range from t – /10 to t + /10 may be more appropriate. 
The vector p is then updated with the new values of ft, t and 
the corresponding LSE. If the current LSE is lower than the 
one in vector b, such a vector is updated with the new values 
of ft, t and LSE. 

4) The procedure in 3) is repeated for all possible ft values. 
At the end, the vector b will have stored the frequency and 
phase of the best match sinusoid Sv, as well as the LSE value, 
which is essential for the main part of the algorithm, as 
described in the following.

D. Frequency, Phase and Amplitude Estimates for the Two 
Sinusoids 

This subsection describes how the single sinusoid 
intermediary estimation is used to speed up the grid search for 
the estimation of the two sinusoids.  

The first step to reduce the computational effort is 
narrowing down the search space by means of the LSE matrix 
M, according to the following. Let m be the LSE value stored 
in vector b. All elements for which Equation 4 holds are 
selected:

1 , , 1m i j k mM ,                (4) 
where

1
1

1000

8 if 1,

0.125 if 1.

m

m

m

m
                   (5) 

The values of  given in Equation 5 were determined 
experimentally in order to select as few elements of M as 
possible, but giving enough room to consider deviations due 
to noise. If only noise free signals were to be considered, the 
values of  could be considerably smaller, which would speed 
up the algorithm. 

The indices i, j and k of each selected element of M have 
associated a f, a  and a , respectively. Additionally, those 
indices provide the corresponding distance d in the F matrix. 
Those four values play a key role in the next steps of the 
algorithm, because they make possible to greatly reduce the 
dimensionality of the problem, as will be explained in the 
following. 

From each selected M(i,j,k), one must obtain the best values 
of A1, A2, f1, f2, 1, 2 for S in Equation 2. Items a), b) and c)
present three procedures to speed up this process. The 

determination of the best among the selected M(i,j,k) will be 
described later. 

a) Reducing the number of amplitude parameters to be 
estimated from 2 to 1 

Instead of estimating one amplitude parameter for each 
sinusoid (A1 and A2 in Equation 2), it is possible to estimate 
only the ratio A2/A1. To do that, it suffices to set one of the 
amplitudes to one, and then scale the other one accordingly. 
Hence, Equation 2 becomes 

1 2
1 2

2 2sin sin
s s

f n f nS n A
f f

 .                (6) 

After estimating the ratio  = A2/A1 and the other 
parameters, the actual amplitudes A1 and A2 can be obtained 
according to 

1 o rA P P  , 2 1A A A  ,              (7) 
where Po is the absolute power level of the original signal X
as given by Equation 1, and Pr is the absolute power level of 
the estimated signal S’ as given by Equation 6.  

b) Reducing the number of phase parameters to be 
estimated from 2 to 1 

Let S" be a phase shifted version of S’ given by 

1 2
2 1

2 2sin sinr
s s

f n f nS n A
f f

.       (8) 

The waveform resulting from Equation 8 is identical to that 
resulting from Equation 6, except for a shift in the phase. 
Estimating only the difference  = 1 - 2, and then applying 
a compensation to match the phase of the target signal, is a 
much faster procedure than trying to estimate 1 and 2

separately. 
The compensation can be done simply by determining the 

phase shift that minimizes the LSE between S" and the target 
signal. A way to do that would be carrying out an exhaustive 
search in which several phase shifts between 0 and 2  would 
be tested. This approach, although effective, is 
computationally inefficient. A much faster procedure is 
presented in the following. 

It can be shown that the LSE between a sinusoid and a 
phase shifted version of that same sinusoid depends only on 
the power level and on the phase displacement in radians. 
Since the sum of two closely spaced sinusoids behaves 
similarly to a single sinusoid, the LSE values obtained for a 
single sinusoid hold almost perfectly when considering a sum 
of two sinusoids. Additionally, the LSE values vary linearly 
with the power level of the signal, making it possible to store 
the values for a given power level, and then properly scale 
those stored values when applying them to other signals. In 
this context, a vector v containing LSE values for phase shifts 
ranging from 0 to  and step size of /50000, was stored for a 
sinusoid with an absolute power level of 0.5. Figure 2 shows 
how the LSE values vary with the phase shift for that power 
level in a frame with 1200 samples. 

As commented before, the vector v has to be scaled 
according to the level of the signal being considered. For 
example, if the signal has an absolute power level of 0.25, 
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vector v has to be multiplied by 0.25/0.5 = 0.5. After that, the 
LSE between the original and estimated signals is calculated 
and the corresponding element v in vector v is identified. The 
shift to be applied to the estimated signal will be either 
v• /50000 if the first peak of such a signal is after the first 
peak of the original signal, or - v• /50000 if the first peak of 
such a signal is before the first peak of the original signal. 
Such a shift is a good approximation for the value of 1 in 
Equation 1, and then 2 =  + 1.

Phase Shift (radians)

LS
E

 V
al

ue

LSE Values for Different Phase Shifts

Fig. 2 LSE values for different phase shifts. 

c) Reducing the number of degrees of freedom in the 
frequency estimation 

The optimum single sinusoid estimation simplifies 
significantly the estimation of the frequencies of the two 
sinusoids. To understand this possibility, note that each 
element resulting from the search performed in matrix M
(Equations 4 and 5) fixes a distance in Hz between both 
frequencies. Additionally, each element in matrix M will have 
associated a distance d in matrix F that reveals the probable 
distance in Hz between the estimated frequency fv for the 
single sinusoid and the mean frequency fm (see Section 3.3). 
Therefore, the value of each frequency to be tested will be 

1 0.5v if f d f   ,                 (9) 

2 1 if f f  ,                   (10) 
where fi is the distance Hz between the sinusoids as given by 
the index i of the element in matrix M currently being 
considered and d = F(i,j,k). The result of this strategy is that 
the number of f1 and f2 combinations to be tested will be equal 
to the number of selected elements in matrix M.

d) Grouping the procedures described in a), b) and c) into 
an effective estimate strategy 

The final steps for the algorithm to estimate the frequencies, 
phases and amplitudes of the sinusoids can be summarized as 
follows:

1- After estimating the parameters of the single sinusoid, 
the elements in matrix M are selected. Each element will have 
four values associated: a frequency difference fi, a phase 
difference j, an amplitude ratio k, and a distance d given 

by F(i,j,k), where i, j, k are the indices corresponding to each 
dimension of matrix M. The selected elements roughly define 
a hexahedron whose dimensions are proportional to the 
tolerance  (see Equations 4 and 5). 

2- Instead of testing all possible fi at once, a few rules are 
applied. At first, only fa is considered, where a is the lowest 
index i among the elements selected from M (usually a = 1), 
and all phase differences  and all amplitude ratios 
associated to this particular frequency difference will be 
considered according to the search performed over matrix M.
In other words, i is fixed to a given value (in this case a), and 
then all possible combinations of j and k associated to fa that 
satisfy the search criteria given by Equation 4 are considered. 

3- The candidate sum of sinusoids Cijk for each i (in this 
case fixed to a), j, and k is then generated according to 
Equations 8 to 10. 

4- The level of each Cijk is then matched to the level of the 
target signal St.

5- The phases of Cijk and St are aligned according to the 
procedure described in item b) of this section. 

6- The LSEs between each Cijk and X are calculated. 
7- If the a LSE is lower than any other observed so far, the 

value of the LSE itself, together with the values of A1, A2, f1,
f2, 1 and 2 are stored in the best estimate vector e.

8- If the lowest LSE achieved for this first fa is smaller 
than min(0.01 , 0.01•m), it is considered that fa is either the 
frequency difference fr that leads to the smallest LSE value, 
or it is relatively close to fr. If this is the case, the algorithm 
will skip to step 10 and continue the search for the minimum 
LSE value considering only the neighborhood of fa; the so-
called reference index that defines such a search 
neighborhood will be, in this case, ir = a. If the condition is 
not satisfied, the search for ir continues, as described in step 9. 

9- If the condition in step 8 is not satisfied, a new fi must 
be considered. Testing all possible values of i sequentially 
until the condition is satisfied would be computationally 
inefficient. Instead, only a number of key points following a
are tested: [400, 800, 200, 600, 100, 300, 500, 700, 50, 150, 
250, 350, 450, 550, 650, 750], in that order. If after all those 
values of i have been considered the condition is still not 
satisfied, ir assumes the value of the index i that resulted in the 
lowest LSE. 

The next steps of the algorithm depend on two variables (p1

and p2) whose values vary according to the value of m. The 
values that the variables can assume are:  

- if m < 0.2, p1 = 50 and p2 = 10;
- if 0.2 m < 1, p1 = 25 and p2 = 15; 
- if 1 m < 5, p1 = 15 and p2 = 15; 
- if m  5, p1 = 10 and p2 = 20. 
The values of p1 and p2 constraint the next steps of the 

algorithm, and were chosen in such a way that the search is 
broader when m is small and narrower when m is large. This 
distinction is necessary because when m has small values, the 
sum of the two sinusoids behave almost as if only one 
sinusoid was present. This normally happens when the 
sinusoids amplitudes are very different and/or the phases and 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:11, 2009

1987

frequencies are very close. Such a situation is very difficult to 
be dealt with, demanding a broader search in order to improve 
the chances of a good estimate. 

In the next steps of the algorithm, the elements of vector e 
will be updated every time the new LSE value is smaller than 
that stored in the vector. 

10- ir (the final reference index obtained from either step 8 
or step 9) determines the point where the final search 
procedure begins. Beginning with ir, a forward search is 
performed by considering all fi for which i is larger than ir.
The search stops either if c – l = p2, where c is the index of the 

f currently being considered and l is the index of the last f
for which the LSE has improved, or if i = 800 (last index). 
The same procedure is repeated backwards. If ir = 1, only the 
forward search is performed, and if ir = 800, only the 
backward search is carried out. 

11- As commented before, each fi has a number of phase 
differences j and amplitude ratios k associated, according 
to the j and k indices resulting from the search over matrix M.
Let jt and kt be the indices to be considered in a given moment. 
The rule is simply to consider all phase differences and 
amplitude ratios whose indices are between t – p1 and t + p1,
where t is the index of the phase that resulted in the smaller 
LSE for the previous index i.

12- The last values stored in vector e reveal all parameters 
of the estimated sinusoids and the LSE with respect to the 
target signal. 

Next section presents the results achieved by the algorithm. 

III. TESTS AND RESULTS

One of the most common procedures to assess the 
performance of an estimation algorithm is the comparison 
with the Cramer-Rao Lower Bound (CRLB) [43].  However, a 
number of reasons prevent that such a comparison be a good 
option in this particular case. First, the discrete values of the 
parameters used by the proposed algorithm introduce a 
quantization error that is not modeled by the Cramer-Rao 
procedure. The average errors produced by simulation 
procedures depend on the parameter values and can vary from 
zero to a multiple of the half interval between adjacent 
discrete levels. This behavior impairs the comparison in 
situations with very low errors, for example, when the SNR 
and/or the number of samples are very high. Hence, it would 
be necessary to calculate an additional average of the errors, 
now varying the values of the parameters inside the range 
between two discrete levels. However, even this additional 
process would not eliminate the differences between the 
assumptions of the CRLB and those of the algorithm. 

The second reason is related to some numerical problems to 
calculate the Cramer-Rao bound. The proposed algorithm is 
intended to operate at critical conditions of resolution, and it 
was not possible to achieve good Cramer-Rao numerical 
values for frequency differences close to 0.1 Hz using only 
1,200 signal samples.  

Due to those characteristics the performance tests were 

developed trying to simulate typical conditions expected to be 
found in the audio context.

The tests to validate the algorithm were performed using 
one thousand 25-ms excerpts sampled at 48 kHz, each one 
consisting of the sum of two sinusoids spaced by a minimum 
of 0.1 Hz and a maximum of 40 Hz. The frequencies, 
amplitudes and phases of each sinusoid were randomly 
generated, with the amplitude ratio between the strongest and 
weakest sinusoids varying from 1:1 to 10:1, the frequencies 
varying between 50 Hz and 10 kHz, and the phases varying 
between 0 and 2 . The noisy conditions were simulated by 
adding white Gaussian noise to each excerpt. Real world 
signals were avoided because their intrinsic variability makes 
it very difficult to determine which would be the target to be 
pursued by the algorithm, preventing a precise performance 
measurement.  

Table 1 shows the root mean square errors (RMSE) 
between the estimates and the targets for the noise free case. 
The frequency error is given in Hz, the amplitude error is 
given in percentage of the target amplitude in order to assign 
equal importance to small and large amplitudes, and the phase 
error is given in radians. 

TABLE I
MEAN RMSE BETWEEN ESTIMATES AND TARGET SIGNAL (NOISE FREE)

Frequency Band Frequency (Hz) Amplitude (%) Phase (rads) 

50 Hz – 10 kHz 0.25 2.16 0.053 
50 – 200 Hz 0.38 3.16 0.058 
200 – 500 Hz 0.28 2.37 0.066 
500 – 1000 Hz 0.22 2.08 0.033 
1 – 10 kHz 0.25 2.01 0.060 

The first row in the table shows the overall errors, while the 
remaining ones show the results for certain sinusoid frequency 
ranges. As can be seen, the error levels for noise free signals 
are very low, especially taking into account the wide range of 
frequencies and amplitudes that are being considered. It is also 
useful to analyze the impact of the amplitude ratio in the mean 
errors. Table 2 shows the mean errors for different amplitude 
ratios (high ÷ low amplitudes) in the absence of noise. 

As can be seen, the amplitude ratio seems to have nearly no 
impact in the overall accuracy for noise free signals, meaning 
that the errors have the same order no matter the amplitude 
ratio. However, when noise is added to the signals, the 
amplitude ratio between the sinusoids plays a central role, as 
can be seen in Table 3. The same behavior is observed when 
analyzing the impact of the distance in Hz between the 
sinusoids.

TABLE II
MEAN ERRORS FOR DIFFERENT AMPLITUDE RATIOS (NOISE FREE)

Amplitude Ratio Frequency (Hz) Amplitude (%) Phase (rads) 
1 - 2 0.25 2.25 0.030 
2 - 5 0.21 2.15 0.062 
5 - 10 0.31 2.07 0.066 
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TABLE III
MEAN ERRORS FOR DIFFERENT AMPLITUDE RATIOS (SNR OF 30 DB)

Amplitude Ratio Frequency (Hz) Amplitude (%) Phase (ras) 
1 - 2 1.51 15.78 0.304 
2 - 5 2.02 22.01 0.388 
5 - 10 3.01 79.86 0.536 

It is also important to analyze the impact of noise in the 
overall performance of the algorithm. Table 4 shows the mean 
errors for a number of different SNRs. 

TABLE IV
MEAN ERRORS FOR DIFFERENT SNRS

SNR (dB) Frequency (Hz) Amplitude (%) Phase (rads) 
>60 0.26 3.01 0.060 
50 0.40 7.19 0.111 
40 0.83 26.9 0.269 
30 2.16 37.1 0.406 
20 6.11 90.8 0.972 
10 8.15 65.6 0.981 
0 9.03 70.7 1.022 

As can be seen in Table 4, the estimates start to degrade 
more rapidly for SNRs below 50 dB. It is worth noting that 
the frequency errors with respect to the absolute values of the 
sinusoid frequencies are small even for low SNRs. This is 
because the single sinusoid estimation presented in Section 
2.3 is very robust and provides a good starting point even 
under severely noisy conditions. However, if the two 
sinusoids are very closely spaced, their frequency difference 
cannot be suitably estimated under such noisy conditions. 

A direct comparison of this algorithm with its predecessors 
is difficult because their characteristics are actually distinct. 
The main purpose of this method is to simultaneously estimate 
all parameters for both sinusoids, while most of the other 
strategies are interested in estimating one of the parameters at 
a time. Also, most of them are based on some statistical 
assumptions, whereas the proposed algorithm is not restricted 
by any statistical assumption. As a consequence, the 
computational effort demanded by the algorithm is higher than 
that demanded by most of the other methods, and can vary 
significantly due to the rules and conditions presented in 
Section 3.4. The algorithm, implemented in Matlab® and 
running in a computer with Intel Centrino Duo processor of 
1.83 GHz, has taken, in average, 10 seconds to process each 
25-ms frame. Such time is certainly excessive to allow real-
time implementations even using a more efficient 
programming language, but it is remarkably low for a grid-
search approach, allowing a relatively fast offline processing 
of an audio signal. Additionally, future versions of the 
algorithm for this application are expected to include 
mechanisms to explore the information extracted from frames 
previously processed, speeding up the program.  

IV. CONCLUSION

This paper presented an algorithm to estimate the 
frequencies, amplitudes and phases of two closely spaced 

sinusoids. It uses a highly optimized grid-search approach to 
provide high-resolution estimates while keeping the 
computational effort at relatively low levels. Its capability of 
resolving sinusoids with extremely close frequencies makes 
this algorithm ideal to be used in the musical signals context, 
whose simultaneous instruments often generate very close 
harmonics that are difficult to be resolved. 

Future versions of the algorithm are expected to include 
several improvements. A strategy able to use the information 
of frames previously processed in order to speed up the 
estimates is expected to be included in the next versions of the 
algorithm, as well as a more efficient strategy to determine the 
spectral band of interest before the parameters estimation. 
There are also plans to use the algorithm as part of a 
monophonic audio source separation tool currently being 
designed.
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