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Abstract—Wind is among the potential energy resources which 

can be harnessed to generate wind energy for conversion into 
electrical power. Due to the variability of wind speed with time and 
height, it becomes difficult to predict the generated wind energy more 
optimally. In this paper, an attempt is made to establish a 
probabilistic model fitting the wind speed data recorded at 
Makambako site in Tanzania. Wind speeds and direction were 
respectively measured using anemometer (type AN1) and wind Vane 
(type WD1) both supplied by Delta-T-Devices at a measurement 
height of 2 m. Wind speeds were then extrapolated for the height of 
10 m using power law equation with an exponent of 0.47. Data were 
analysed using MINITAB statistical software to show the variability 
of wind speeds with time and height, and to determine the underlying 
probability model of the extrapolated wind speed data. The results 
show that wind speeds at Makambako site vary cyclically over time; 
and they conform to the Weibull probability distribution. From these 
results, Weibull probability density function can be used to predict 
the wind energy. 
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I.   INTRODUCTION 

IND is a highly promising energy resource such that the 
development of wind energy technology in the world 

has tremendously expanded in the last few years. With the 
increasing thrust on renewable energy sources, it is expected 
that the growth of wind energy use will continue in the future.  

Reference [1] shows that an additional capacity of 25,500 
MW is expected to be erected worldwide in the second half of 
2011, which would bring new annual installations to 43,900 
MW, compared with 37,642 MW in the year 2010. The total 
installed wind capacity is projected to reach 240,500 MW by 
the end of the year 2011. This capacity can cover almost 3% of 
the electricity demand all over the world. Due to the growing 
economic and increased social activities in Tanzania, the 
demand for electrical power has rapidly increased to exceed 
the actual generated electrical power. The projected growth of 
10% per annum will bring the electricity demand to 
approximately 1105 MW in 2012 and 1219 MW in 2013 [2]. 
The potential energy sources in Tanzania are hydro and 
thermal power plants.  

In reference [2], it is also reported that hydro power plants 
contributes the largest share of power generation of about 73% 
of total power generated from October 2009 to September 
2010 while the remaining amount is contributed by natural gas 
and diesel power plants. Tanzania Electric Supply Company 
(TANESCO), a state-owned company, operates hydropower 
plants with a total installed capacity of 561 MW and gas-fired 
plants with the capacity of 145 MW [3].  

 
M. I. Mgwatu is with the Department of Mechanical and Industrial 

Engineering, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, 
TANZANIA (phone: +255-22-2410754; fax: +255-22-2410114; e-mail: 
mgwatu@udsm.ac.tz).  

R. R. M. Kainkwa is with the Department of Physics, University of Dar es 
Salaam, P.O. Box 35052, Dar es Salaam, TANZANIA (e-mail: 
kainkwa@udsm.ac.tz). 

 
Independent power plants contribute to a total installed 

capacity of 282 MW. With comparison to the increasing 
electrical power demand, it is evident that Tanzania will 
continue to face a deficit of electrical power. 

The dependence of hydro and thermal energy sources in 
Tanzania have also been subjected to environmental and socio-
economical challenges. These include un-reliability and un-
sustainability of power generation due to long-term droughts, 
sediment filling in water reservoirs, and water-consuming 
agriculture and livestock activities. Further to that, the frequent 
increase in oil price will limit the use of fossil fuel for electric 
power generation. However, the fossil fuel in general is 
associated with environmental pollution and destruction.  

Tanzania is enriched with other energy sources which are 
yet to be exploited. These include coal, geothermal, nuclear, 
and tidal waves. However, the development of energy from 
these sources needs higher investment. In view of the above 
limitations, wind energy can be appropriate toward meeting 
the continually increasing demand for energy. For isolated 
systems such as rural electrification, wind energy has been 
considered as attractive and preferred alternative energy 
source [4]. Although wind energy development in Tanzania 
started in the 1970’s, it has been affected by lack of necessary 
wind data required for predicting the generated wind energy. 
For example, the underlying probability distribution of the 
wind speed data at meteorological stations in Tanzania is not 
well established. Due to the variability of wind speed with time 
and height, it becomes difficult to predict the generated wind 
energy if the underlying probabilistic model of the wind speed 
is not known. It is the purpose of this study to make an attempt 
to establish the underlying probability model that fits the wind 
speed data that were recorded at Makambako wind site in 
Tanzania.  

II.   MATERIALS AND METHODS 

The study adopted wind data measured at Makambako site, 
one of the areas identified to have high annual average wind 
speed in Tanzania. Wind speed and direction were respectively 
measured by anemometer (type AN1) and wind Vane (type 
WD1) both supplied by Delta-T-Devices. The two wind 
sensors were positioned 2 m above the ground level. Wind 
measuring devices were part of the other sensors of the 
portable weather station including relative and temperature 
sensor type RH A1, soil temperature probe type ST1, rain 
gauge RG1 and solar energy sensor.  The soil temperature 
probe was installed at 5 cm below the soil surface, whereas the 
rain gauge was just put on the ground surface. Electrical 
signals from these sensors were connected to a delta-T logger, 
the latter of which was powered by the battery whose voltage 
was enhanced using a solar panel. The logger can be 
configured in varieties of ways depending on the type of 
research needs and sensor characteristics.  
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For example, the data logger can be configured in such a 
way that data are collected after every one minute and the 
averages recorded after every hour. Most of the data used in 
this study are of this form. However, data for rainfall can be 
recorded on a longer time than one hour. The data were 
retrieved from the data logger to the computer using software 
called DL2e. 

Wind speed data were measured 2 m above the ground 
level.  The data were extrapolated from the measurement 
height to the wind turbine hub height of 10 m. The 
extrapolated wind speed was estimated using the power law 
equation [4], [5]: 
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Where uz is the wind speed (m/s) at height z (meters), and ur is 
the known wind speed at a reference height zr. The exponent α 
is an empirically derived coefficient that varies depending 
upon the stability of the atmosphere and the surface roughness 
length. The power law exponent of 0.47 for Makambako site 
was established to extrapolate wind speed to the hub height of 
wind turbine from measurement levels [5]. 

Data were analysed using MINITAB statistical software. 
The time series plot was constructed for visual observation of 
wind speed variation with time and height. The conformity of 
the wind speed data to theoretical probability distributions was 
determined using probability plotting technique. Four common 
probability distributions were tested to check their conformity 
to the wind speed data. These are normal, log-normal, 
exponential, and Weibull distributions.  

The normal probability density function is expressed as: 
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The cumulative distribution function of the normal distribution 
is given as: 
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The log-normal probability density function is expressed as: 
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The log-normal cumulative distribution function is: 
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The probability density function of exponential distribution is 
given by: 

( ) ∞<≤λ= λ− xexf x 0,        (6) 

The cumulative distribution function of the exponential 
distribution is: 

( ) xexF λ−−=1          (7) 

The Weibull probability density function is presented by: 
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The Weibull cumulative distribution function is given by: 
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Although the time series plot can show the variability of 
wind speed data with time, it cannot establish the true 
underlying probability distribution that generated the data and 
therefore the data values have to be assessed whether they 
follow to one of the theoretical probability distributions. The 
probability plotting technique can be used to determine the 
theoretical distribution fitting the wind speed data. It creates an 
estimated cumulative distribution function from the wind 
speed data by plotting each data against its estimated 
cumulative probability. In order to validate the probability 
distribution to be likely providing a reasonable model for the 
wind speed data, the plotted points will roughly form a straight 
line, the plotted points will fall close to the fitted distribution 
line, and the Anderson-Darling (AD) statistic will be small 
with the associated p-value being larger than the commonly α-
level of 0.10. 

III.  RESULTS AND DISCUSSION 

The time series plot in Fig. 1 shows the importance of time 
on variability of wind speed. The monthly average wind 
speeds at Makambako for the years 2004, 2005 and 2006 at 
measurement height and with extrapolated values varied at a 
large extent with time exhibiting a cyclic variation of data. 
There were consistent linear increases in wind speeds between 
March and October and sharp drops in wind speeds between 
October and December for years 2004, 2005 and 2006. The 
Figure also shows that the average extrapolated wind speeds 
for Makambako between March and December were above 6 
m/s. In addition, significant extrapolated wind speeds at 
Makambako were observed between September and 
November with October recording the highest average wind 
speed of more than 10 m/s for all months of the years under 
consideration. The time series plot also shows that the year 
2005 recorded the highest extrapolated wind speeds exceeding 
13 m/s as compared to wind speeds in 2004 and 2006. 
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Fig. 1 Time series plot for wind speed data 
 
In Fig. 2, MINITAB presents quantitative measures on how 

the wind speed data are described by the normal probability 
distribution. The plotted points form straight lines close to the 
fitted distribution lines. The Anderson-Darling (AD) statistics 
are 0.644 and the p-values for AD tests are 0.086. Since the p-
values are below 0.10, the assumption for normal probability 
of the wind speed data for Makambako site is inappropriate.  

Fig. 3 shows the MINITAB plots of lognormal probability. 
It can be observed from the figure that the plotted points fit 
straight lines close to the fitted distribution lines. The AD tests 
are equal to 1.15 and the p-values for AD tests are less than 
0.005.  

Since the p-values are below 0.10, it implies that the 
lognormal distribution does not fit the wind speed data at 
Makambako. 

MINITAB exponential probability plots of wind speed data 
are shown in Fig. 4. As can be noted in the figure, the plotted 
points do not form straight lines closed to the fitted 
distribution lines. The AD tests are equal to 9.043 and the p-
values for AD tests are less than 0.003. Since the plotted 
points do not form straight lines that are close to the fitted 
distribution lines and the p-values are below 0.10, it means 
that the exponential distribution is not a good probability 
measure for the wind speed data at Makambako. 
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Fig. 2 Normal probability plot for wind speed data 
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Fig. 3 Lognormal probability plot for wind speed data 
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Fig. 4 Exponential probability plot for wind speed data 

 
Fig. 5 shows Weibull probability plots generated by 

MINITAB. The plotted wind speed data in the figure form 
straight lines being close to the fitted distribution lines. The 
AD statistics are 0.554 and the p-values for AD are 0.16 which 
are above 0.10. Since the plotted data form reasonable straight 
lines that are close to the fitted distribution lines and the p-
values obtained are above 0.10, it clearly suggests that Weibull 
probability is the right model for the wind speed data at 
Makambako site. With Weibull probability distribution, 
MINITAB also provided the maximum likelihood estimates of 
the shape parameter β=4.512 and the scale parameter δ=4.646 
for wind speed data at measurement height of 2 m; and 
β=4.512 and δ=9.899 for extrapolated wind speed at 10 m with 
0.47 exponent at Makambako site. 

Reference [6] reports that many studies have confirmed that 
the Weibull probability distribution of two parameters is 
successfully in describing the wind speed variation as it has 
been validated in this study. The Weibull probability density 
function was provided in Equation (8) as: 
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Wind energy per time transported by the air stream with speed 
v can be calculated using the following expression [6]-[8]: 

3
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Where A is the swept area perpendicular to the direction of the 
wind speed, and ρ is the air density. The Weibull probability 
density function of wind energy per time may therefore be 
expressed as a function of Pv [6]:  
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With parameters   
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Fig. 5 Weibull probability plot for wind speed data 

 
 

IV. CONCLUSIONS 
Wind speeds vary cyclically from instantaneous, hourly, and 

daily to seasonal at measurement height as well as at estimated 
hub height. The presence of these variations makes it 
necessary to describe wind speeds by a probabilistic model. In 
this study, four probabilistic models were tested to examine 
which model describes the measured wind speed at 
Makambako site in Tanzania. Weibull probability distribution 
has confirmed to fit the wind speed data at measurement height 
and the extrapolated wind speeds at hub height of 10 m for 
Makambako site. Subsequently, the Weibull probability 
density function can be used to predict the wind energy 
conversion chain more optimally. 
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