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Abstract—Link reliability and transmitted power are two important
design constraints in wireless network design. Error control coding
(ECC) is a classic approach used to increase link reliability and
to lower the required transmitted power. It provides coding gain,
resulting in transmitter energy savings at the cost of added decoder
power consumption. But the choice of ECC is very critical in the
case of wireless sensor network (WSN). Since the WSNs are energy
constraint in nature, both the BER and power consumption has to
be taken into count. This paper develops a step by step approach in
finding suitable error control codes for WSNs. Several simulations are
taken considering different error control codes and the result shows
that the RS(31,21) fits both in BER and power consumption criteria.
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[. INTRODUCTION

The recent development in micro-electro-mechanical sys-
tems technology, signal processing, wireless communications
and digital electronics have enabled the development of wire-
less sensor nodes in a wireless sensor network (WSN). These
tiny sensor nodes are able to sense, process and communicate
with each other [1],[2]. Since the battery capacity in each
node is limited and the goal is to maximise the lifetime of
the network, there are strict energy consumption constraints
in WSNs [8]. Of the three domains (sensing, communicating
and processing), a sensor node expends a considerable amount
of energy in data communication. Reliability is the primary
requirement of any communication. The level of reliability
provided by the link layer depends on the requirements of
application and the users specified constraints.

A sensor node device usually employs some optimization
strategy to reduce energy consumption, like switching the
transceiver unity to the sleeping mode, significantly reducing
the consumption with respect to the active mode. As the
radio transceiver is the most demanding energy module, a
classical strategy is to minimize his active period of time,
which obviously depends on transmission and reception traffic
demands. A first strategy is to activate the transmitter only
when there are data to be transmitted, but keeping the receiver
awake for capturing data packets addressed to the node. Such
solution certainly is not efficient for energy preservation,
because the receiver is active even if there is no data to be
received. A way to circumvent this problem is to keep also
the receiver in the sleeping mode, activating it only for short
periods of time to verify the channel activity and receive data,
turning back to the sleeping mode if no signal is detected [3]
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Another approach to reduce consumption is to improve the
network routing algorithms, distributing the load for forward-
ing the information to the destination node. It is also possible
to apply local data aggregation (cluster). In this scenario the
data forwarding to the destination occurs in multiple hops
through concentration nodes (cluster heads). The cluster head
nodes consume more energy, since they have a higher active
period and transmission power. Using periodic or random
intervals, the cluster head function is switched to other nodes,
aiming at better distributing the energy consumption in the
network [4].

However, the aforementioned solutions are susceptible to
channel impairments, because any radio signal is affected by
random noise and channel fading [5], [6]. If a node receives a
corrupted data packet, the data can be discarded and the node
keeps waiting for a new transmission or the node employs an
Automatic Repeat reQuest (ARQ) procedure (a retransmission
procedure). However, in both cases there is a waste of energy
in the network. A particularly undesirable situation occurs
when the channel condition is bad, causing successive retrans-
missions. Another method to increase the energy conservation
in WSN is to apply forward error correction (FEC) strategies,
reducing the frame error rate and consequently the number
of retransmissions. Basically there are two classes of error
control codes: block codes and convolutional codes. The
convolutional encoding technique is a strategy widely used in
wireless communication environments like sensor networks,
since they usually present a simpler implementation for the
same performance of a competitor block code [7].

The issue of applying error control codes to WSNs is the
topic for some of the previous works where the performance of
block codes and Viterbi decoded convolutional codes is inves-
tigated [9]-[11]. Also, the iterative decoding algorithm justifies
the ability of turbo codes in solving the hot-spot problem and
prolong the network lifetime [12]. Error control coding (ECC)
is a classic approach used to increase link reliability and lower
the required transmitted power. However, lowered power at
the transmitter comes at the cost of extra power consumption
due to the decoder at the receiver. Stronger codes provide
better performance with lower power requirements, but have
more complex decoders with higher power consumption than
simpler error control codes. If the extra power consumption at
the decoder outweighs the transmitted power savings due to
using ECC, then ECC would not be energy-efficient compared
with an uncoded system.

Previous research using ECC in wireless sensor networks
focused primarily on longtime industry-standard codes such
as Reed-Solomon and convolutional codes. A hybrid scheme
choosing the most energy-efficient combination of ECC and
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ARQ is considered in [13], using checksums, CRCs, Reed-
Solomon and convolutional codes. A predictive error correc-
tion algorithm is presented in [14] which uses data correlation,
but is not an error control code, as there is no encoding.
Power-aware, system-level techniques including modulation
and MAC protocals, as well as differing rate and constraint
length convolutional coding, are considered in [15] to reduce
system energy consumption in wireless microsensor networks.
Depending on the required bit error rate (BER), a higher
rate convolutional code, or no coding at all, could be the
most energy-efficient approach. In this paper, a suitable error
correction code is chosen from a list of existing codes for
wireless sensor network.

The rest of the paper is organised as follows. Section II
discusses the wireless sensor network channel error charac-
teristics. In section III, several error correction codes are ex-
plained. Energy model for wireless sensor network is discussed
in section IV. Selection procedure of error correction code is
developed in section V and finally, section VI concludes the

paper.

II. WIRELESS SENSOR NETWORK CHANNEL ERROR
CHARACTERISTICS

Our system model is a centralized wireless sensor network
suitable to applications like IEEE 1451.5 standard, where
many clusters with several sensors are connected wirelessly
with the DGN using multihop communication and is shown
in Fig. 1. This section examines the characteristics of bit
errors in sensor networks to determine whether their BER
varies smoothly enough to be traced down. When wireless
channel is modeled as a state machine and a state is specified
as BER, Adaptive FEC Code Control (AFECCC) adaptability
is determined by the average duration of a state and the BER
difference between two adjacent states. If BER varies more
rapidly than the adaptation delay taken for detecting BER
variation and calculating the suitable FEC level, it hardly ac-
complishes any improvement. If the channel BER is constant,
furthermore, it may be useless. Fig. 2 shows NCBPP (the
Number of Corrupted Bytes Per Packet) standard deviation
distribution of 10 traces at each TR distance (standing for the
distance between the transmitter and receiver) by incrementing
1m from 6m to 13m. Each trace represents 4-hour traffic from
a sensor network where a Mica Mote sender continues to
transmit 100-byte packets to its receiver at the maximum speed
of 3.2Kbps by FSK (Frequency Shift Keying) modulation with
915 MHz carrier signal and 90mW transmission power.

Fig. 2 indicates that the average NCBPP gradually increases
from 2-byte within close distances less than 11m to 11-
byte as TR distance approaches 13m, the threshold distance
for distinguishing signal. The standard deviation range also
widens from 2-byte up to 10-byte as TR distance gets larger.
The growth of the average NCBPP as a function of TR distance
is explained by LSF (Large Scale Fading) effect that the signal
power fades in proportion to TR distance. The expansion of
the standard deviation span is due to that SSF (Small Scale
Fading) effect mainly caused by multi-path interferences gets
stronger as the signal power becomes weaker.

Cluster to DGN
transmission

Cluster to cluster
transmission

Cluster 1 Cluster 2

Fig. 1. System model for a typical wireless sensor network
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Fig. 2. Number of corrupted bytes per packet distribution as a function of
transmission distance

Based on Fig. 2, we can say that AFECCC is indispensable
to accommodate the wide BER distribution when receivers
move around or even when they are statically located apart
further than 10m from their sender. When a receiver roams
around within 13m radius from its sender, for instance, the
sender needs to add 36-byte RS (Reed-Solomon)[16] code to
correct the worst 18 damaged bytes at 13m TR distance. Note
that RS code requires 2-byte correction code for 1-byte error.
This static FEC algorithm, however, leads to 24-byte waste at
TR distance less than 11m where the maximum number of
erroneous bytes is less than 6.

Fig. 3 shows how fast the channel BER changes by plotting
Allan deviation [17]. For Allan deviation, we divide a packet
trace into time slots, compute NCBPP average of each time
slot, and finally calculate Allan deviation, namely the variance
of two neighbor time slots NCBPP. Allan deviation represents
the smoothness of BER changes. Fig. 3 displays five Allan
deviation graphs for five different TR distances as the time
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Fig. 3. Allan deviation of number of corrupted bytes per packet distribution

slot width for averaging NCBPP expands. In Fig. 3, the Allan
deviation of 13m trace is 4-byte at 1s (second) time span while
it rapidly decreases up to 1-byte at 60s interval. This Allan
deviation plots again verify that NCBPP slowly changes at
close TR distances while it abruptly varies at distant ones.
This observation also illustrates the appropriate FEC code size
difference between two adjacent FEC levels depends on the
time scale to track down. When AFECCC aims at tracing
1s BER variations, for example, its levels should be apart
further than 4-byte at least. On the other hand, when it tries
to follow long-term variations, the difference between two
neighbor levels should be more than 4-byte.
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Fig. 4. Graph of Frequency Against Burst Error Length (Bits) Per 10000
Packets

From a preliminary measurement in Fig. 4, we can observe
that most bit errors are single-bit or double-bit errors and burst
errors are present but rare. Thus, it is likely that an encoding
scheme that corrects single and double-bit errors can reduce a
significant portion of the errors. Another measurement in Fig.
5 shows that the packet loss due to preamble misdetection Ppre
is very small. For example, at a distance of 41.1m, Ppre =
0.4%. Thus, we confirmed that preamble misdetection does
not cause significant packet loss and most of the packet losses
are due to errors in other parts of the packet.
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Fig. 5. Graph of Packet Loss over distance for different causes: preamble
misdetection and corruption in data payload

III. ERROR CORRECTION CODES

Error control coding (ECC) introduces redundancy into an
information sequence u of length k£ by the addition of extra
parity bits, based on various combinations of bits of u, to
form a codeword x of length nc > k. The redundancy
provided by these extra nc — k parity bits allows the decoder
to possibly decode noisy received bits of x correctly which,
if uncoded, would be demodulated incorrectly. This ability
to correct errors in the received sequence means that use of
ECC over a noisy channel can provide better bit error rate
(BER) performance for the same signal-to-noise ratio (SNR)
compared to an uncoded system, or can provide the same BER
at a lower SNR than uncoded. This difference in required SNR
to achieve a certain BER for a particular code and decoding
algorithm compared to uncoded is known as the coding gain
for that code and decoding algorithm. Typically there is a
tradeoff between coding gain and decoder complexity. Very
long codes provide higher gain but require larger decoders
with high power consumption, and similarly for more complex
decoding algorithms.

Several different types of ECC exist, but we may loosely
categorize them into two divisions: (1) block codes, which are
of a fixed length n¢, with no — k parity bits, and are decoded
one block or codeword at a time; (2) convolutional codes,
which, for a rate k/n¢c code, input k bits and output ne bits
at each time interval, but are decoded in a continuous stream of
length L >> n¢. Block codes include repetition codes, Ham-
ming codes [18], Reed-Solomon codes [19], and BCH codes
[20], [21]. The terminology (n¢, k) or (n¢, k, dmin) indicates
a code of length nc with information sequence of length &,
and minimum distance (the minimum number of different bits
between any of the codewords) d,,;,. Short block codes like
Hamming codes can be decoded by syndrome decoding or
maximum likelihood (ML) decoding by either decoding to the
nearest codeword or decoding on a trellis with the Viterbi
algorithm [22] or maximum a posteriori (MAP) decoding
with the BCJR algorithm [23]. Algebraic codes such as Reed-
Solomon and BCH codes are decoded with a complex poly-
nomial solver to determine the error locations. Convolutional
codes are decoded on a trellis using either Viterbi decoding,
MAP decoding, or sequential decoding. Another categorization
is based on the decoding algorithms: (1) noniterative decoding
algorithms, such as syndrome decoding for block codes or
maximum likelihood (ML) nearest-codeword decoding for
short block codes, algebraic decoding for Reed-Solomon and
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BCH codes, and Viterbi decoding or sequential decoding
for convolutional codes; (2) iterative decoding algorithms,
such as turbo decoding with component MAP decoders for
each component code, and the sum-product algorithm (SPA)
[24] or its lower complexity approximation, min-sum decod-
ing [25],[26], for low-density parity-check codes (LDPCs).
The noniterative decoding category may be further divided
into hard- and soft-decision decoders; hard-decision decoders
output a final decision on the most likely codeword, while
soft-decision decoders provide soft information in the formof
probabilities or log-likelihood ratios (LLRs) on the individual
codeword bits. Viterbi decoding can be either hard-decision
or soft-decision, with a 2 dB gain in performance for soft-
decision decoding. Category (2) are all softdecision algorithms
by nature, as iterative decoding requires soft information as
a priori input for each iteration. Iterative decoding algorithms
provide significant coding gain, at the cost of greater decoding
complexity and power consumption.

IV. ENERGY MODEL FOR WIRELESS SENSOR NETWORK

For this model the final decoding energy has also been
ignored since the base station is not power constrained and
only the encoding energy for first node is considered. The
energy consumed at node level can be computed as follows:

Etotal = Eenc + ETX + ERX (1)

where

Fiotar : Total energy consumed in the network

Fene @ Energy consumed by the encoder at the first node
Erx : Energy consumed in transmission by all nodes

Frx : Energy consumed in receiving the data by all nodes
except first one

m m—1

Etotal = Eenc + Z NbEtz + Z NbErz (2)
i=1 i=1

where

m : Number of hops

Ny, . Total number of bits transmitted

FEy, : Energy consumed in transmitting a single bit from a

node

FE,. : Energy consumed in receiving a single bit at a node

The term E, can be represented as [28]:
Etw = Ete + Etada (3)

where, E. is the power consumption at transmitter electronics
« is the path loss component usually varies between 2 —4 with
« = 3 being a typical value when scattering is considered [29].
FE, is the power consumption of transmitter amplifier and can
be given as:

(), (N Frx) (No) (BIW) ()2
(Gant)(namp) (Rbit)

Eia = “

where, (%)T(i) is the desired SNR at the i, receiver,

NFrx is noise figure at receiver, Ny is the thermal noise,
BW is the bandwidth of channel noise, A is wavelength, Gt
is antenna gain, 74, 1S the transmitter efficiency and Ry is
the raw channel rate in bps. If the channels have low noise,
this scheme may completely recover the original data with the
additional advantage of low energy consumption.

V. ERROR CORRECTION CODE SELECTION IN WIRELESS
SENSOR NETWORK

Wireless sensor network is a special wireless network where
power consumption is an important issue. Since the wireless
sensors are energy constraint, not all the error correcting codes
are suitable for this application. Fig. 6 shows the typical BER
characteristic for different error correction schemes. Result
shows that the convolution and RS code performs better BER
characteristics than the other counter parts. Convolution code
is not suitable as it requirs high power consumption [27].
Therefore different RS codes are taken to compare their BER
and is shown in Fig. 7.

RS code is considered to be the best choice for WSN having
maximum energy efficiency in proper channel conditions or
when relay nodes are sufficient in numbers i.e. greater than 5
[10].

Considering,

k : Number of information symbols.
n : Length of the code word.

FEiotar : Evaluated from equation 5

We consider the cases for uncoded and RS coded data to
evaluate the total energy consumption. For later comparisons
uncoded data is transmitted first through the network. The
number of bits transmitted is equal klog,(q?).

Etutal = k10g2 (q2)[mEtm + (m - 1)EIL] (5)

In the case of Reed-Solomon Codes, energy consumed in
encoding is considered as Erg. The length of the code is
(g% — 1) for RS codes which is equivalent to (¢> — 1)log,(q?)
bits transmitted.

Etutal = ERS(q2 - 1)10g2(q2)[mEt‘L + (’ITL - 1)]{:E71} (6)

Power consumption analysis are also taken into considera-
tion and is shown in Table I.

From the simulations results shown in Fig. 7, RS (31,21)
shows the best BER performance among the list but from
Table 1, it is clear that RS (31,26) offers the lowest power
consumption. RS (31,21) also offer insignificant power con-
sumption compared to the other counterparts. Since both
power consumption and BER are important tools, RS (31,21)
can be selected as optimum error correction tool.

VI. CONCLUSION

The use of error correcting code (ECC) can allow a system
to operate at significantly lower SNR than an uncoded system,
for the same BER. But the choice of ECC is a very important
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Fig. 6. BER analysis for different error correcting codes
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Fig. 7. BER analysis for different Reed Solomon codes

for a wireless sensor network. In this paper, the wireless
channel is analyzed and several ECC techniques are simulated.
Power consumtion values for several selected ECC are shown.
After the comparison of power consumption and BER analysis,
RS (31,21) turns out to be the optimal choice of ECC at the
wireless sensor network environment.

TABLE I
POWER CONSUMPTION IN RS CODES

RS code Power consumption(nW)
RS(15,11) 200
RS(31,26) 125
RS(31,21) 150
RS(31,16) 275
RS(31,11) 450
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