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Abstract—Wavelet transform has been extensively used in 

machine fault diagnosis and prognosis owing to its strength to deal 

with non-stationary signals. The existing Wavelet transform based 

schemes for fault diagnosis employ wavelet decomposition of the 

entire vibration frequency which not only involve huge 

computational overhead in extracting the features but also increases 

the dimensionality of the feature vector. This increase in the 

dimensionality has the tendency to ‘over-fit’ the training data and 

could mislead the fault diagnostic model. In this paper a novel 

technique, envelope wavelet packet transform (EWPT) is proposed in 

which features are extracted based on wavelet packet transform of the 

filtered envelope signal rather than the overall vibration signal. It not 

only reduces the computational overhead in terms of reduced number 

of wavelet decomposition levels and features but also improves the 

fault detection accuracy. Analytical expressions are provided for the 

optimal frequency resolution and decomposition level selection in 

EWPT. Experimental results with both actual and simulated machine 

fault data demonstrate significant gain in fault detection ability by 

EWPT at reduced complexity compared to existing techniques.   

 

Keywords—Envelope Detection, Wavelet Transform, Bearing 

Faults, Machine Health Monitoring.  

I. INTRODUCTION 

ACHINE condition monitoring (MCM) is crucial in all 

industrial processes to achieve high reliability, reduced 

man power and scheduled maintenance. Rotary machinery is 

the crucial component in almost all the industrial processes. In 

case of rotary machinery, malfunctioning in the operation of 

the bearing is the most common fault. It has been investigated 

that 40% of the total machine faults are because of bearing 

faults [1]. In the bearing faults, certain vibration patterns are 

generated whenever the rolling element passes the defect 

position. These vibration patterns vary according to the 

variations in the machine dynamics. The vibration 

characteristics frequencies generated by inner race, ball and 

outer race faults are given in (1)-(3) which are dependent upon 

the speed of rotation and geometry of the bearing [2].  
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where ��	, !"#$%&, !'()), * and � represent the rotational 

speed, pitch diameter, ball diameter, number of balls and the 

contact angle as highlighted in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

In MCM, there are many techniques which deal with 

diagnosis and prognosis of machine faults [3-5] and some are 

also proposed by the authors [6-10]. Wavelet packet transform 

has been extensively used in MCM to extract the frequency 

domain information in case of non-stationary signals [4, 11-

17]. Wavelet transform divides the overall vibration spectrum 

into multiple sub-bands. The entire frequency band is not 

enriched in fault diagnostic signatures, rather only the resonant 

frequency band contains dominant fault signatures as signal to 

noise ratio (SNR) of the vibration data is maximal at resonant 

frequency band [18]. The existing schemes dealing with 

wavelet packet transform (WPT) decompose the vibration 

signal to very high decomposition levels to extract the fault 

related information into different frequency sub-bands. Higher 

decomposition level results in larger number of features [4, 

14]. Only a few of the features correspond to the resonant 

frequency band and contributes dominantly in fault diagnosis. 

The remaining redundant features may mislead the fault 

diagnostic model and decrease its accuracy in detecting fault. 

Moreover, large number of features cause extra computational 

overhead in terms of computing feature vector as well as 

increase the complexity of the fault diagnostic model.  

In this paper, a new technique, envelope wavelet packet 

transform (EWPT) is proposed. In EWPT, envelope [19] of 

the vibration data is determined and the features are only 

extracted for the part of the envelope spectrum which contains 

fault diagnostic information. As a result reduced number of 

features is extracted, which achieves enhancement in the fault 
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Fig. 1 Rolling element ball bearing geometry 
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detection accuracy and reduced complexity. Moreover, 

analytical expressions are provided for the optimal selection of 

the decomposition level, which provides requisite classifiable 

information to extract the features for the fault diagnostic 

model.  

The paper is organized as follows, Section II presents 

framework for EWPT, Section III provides results and 

substantiates the need for EWPT in comparison to the 

techniques based on WPT. Section IV provides concluding 

remarks for the proposed scheme.  

II. FRAMEWORK FOR ENVELOPE-WAVELET PACKET 

TRANSFORM 

This section provides framework for the fault diagnostic 

model based on EWPT. EWPT follows a hierarchical 

paradigm as illustrated in Fig. 2. First, an envelope of the 

digitized vibration data is determined. There are different 

techniques for envelope detection, in this paper, Hilbert 

transform is used [20]. The envelope of signal is extracted 

such that it contains only the band which corresponds to the 

fault signatures. Second, Wavelet packet transform is applied 

on the vibration data corresponding to the envelope signal. 

The decomposition level of the wavelet is selected such that 

the frequency bands representative of the different faults lie in 

different wavelet decomposition nodes. It helps the fault 

diagnostic model to correctly classify the type of fault. Third, 

a diagnostic model is built using the extracted data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Envelope Detection:  

Envelope detection is extensively used technique to 

determine bearing faults [19]. EWPT validates that the 

envelope detection together with wavelet packet transform 

enhances the robustness of the fault diagnostic model. In 

EWPT, the envelop of the signal is determined based on 

Hilbert’s transform [20] as given in (4):  

�+,-.�/� �  �+,-� � 01�+,-2�,                      (4) 

where 01�+,-2 represents the ‘Hilbert’ transform of the signal �+,-.  

B. Wavelet Packet Transform 

In order to extract the time-frequency information in the 

non-stationary vibration signal, digitized vibration data are 

decomposed using WPT [4, 11-17]. WPT helps in 

investigating the frequency contents of the vibration data in 

different frequency ranges, i.e., nodes. Among different time-

frequency domain signal processing techniques, e.g., discrete 

Fourier transform (DFT), short time Fourier transform (STFT) 

and wavelet packet transform (WPT), WPT can be used for 

comprehensive analysis of non-stationary vibration signal to 

reliably extract its time and frequency domain contents [11]. 

DFT of a non-stationary signal 34*5 (5) does not exploit the 

variation in frequency contents with respect to time. Rather it 

averages out the frequency content over the whole signal 

range [11]. 

6+7- �  ∑ 34*5 9:;<=>
? @A�,B:C�DE   7 �  0,1, … +H � 1-.   (5) 

The shortcomings of DFT can be overcome by STFT (6), 

but STFT suffers from the problem that it yields the same time 

and frequency resolution for both low and high frequencies. 

The time and frequency resolution remains same because 

window size I4*5 remains constant throughout the analysis 

[11].  

6+J, 7- �  ∑ 34*5I4J � *59:;<=>
? @A�B:C�DE  , 

         7 �  0,1, … , +H � 1-.                           (6) 

In order to overcome the drawback of fixed time-frequency 

resolution in STFT, WPT can be used which has the tendency 

to perform multi-resolution analysis. Digitized vibration data 

are passed through high pass K4*5 and low pass L4*5 
Quadrature Mirror Filters (QMFs) (7)-(8) and then down 

sampled. QMFs are finite impulse response (FIR) filters or 

infinite impulse response (IIR) filters [21]. Filter selection is a 

very crucial part in case of analysis using WT. In the proposed 

scheme, Daubechies (Db5) filter [14] is used which is an FIR 

filter. The total number of nodes at any M � ,K decomposition 

level is given by (9): 

N(""�OP4*5 � 34*5 Q L4*5, 
or             N(""�OP4*5 � ∑ 3475 R L4* � 75AD SAD :S .         (7) 

N
.$(#).
4*5 � 34*5 Q K4*5, 
or             N
.$(#).
4*5 � ∑ 3475 R K4* � 75AD SAD :S .       (8) 

 H; �  2;UV�WX�.                               (9) 

C. Envelope-Wavelet Packet Transform (EWPT):  

In EWPT, the envelope of the incoming vibration data is 

determined as in (4). In the bearing faults, the defect 

frequency spectrum spreads over a wide band [22, 23] due to 

background noise. In order to capture the dominant signatures, 

WPT is used along envelope detection. In EWPT, instead of 

decomposing the entire frequency band using WPT, the 

portion of the envelop signal which contains dominant fault 

signatures is filtered first. Filtered-envelope signal is 

decomposed using WPT in order to extract features for the 

fault diagnostic model.  

Fig. 2 Envelope-Wavelet Packet Transform (EWPT) 

Wavelet Packet Transform 

Fault Diagnostic Model 

Envelop Extraction 

Vibration Data 
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EWPT is designed to diagnose three types of bearing faults 

i.e., inner race, outer race and rolling element with defect 

frequencies as (1)-(3). Figure 3 presents the generic envelope 

spectrum of three fault signals with defect frequencies as �Y, �Z and �[. The spreading of the defect frequency spectrum is 

incorporated with bandwidth as \] . In Fig. 3, \.�/  is the 

bandwidth of the envelope signal and \^  is ‘guard’ band 

between the dominant components of the frequency spectrum 

with different fault frequencies. In EWPT, instead of using the 

entire vibration spectrum of the envelope signal for wavelet 

transformation, the envelope signal is passed through band 

pass filter with cut-off frequencies as the effective bandwidth 

of the envelope signal, i.e., \.�/ . It results in the reduced 

decomposition level of the wavelet packet transform and the 

number of features (sub-bands) is reduced accordingly as in 

(9).   

 

 

 

 

 

 
 

 

 

 

 

 

The bandwidth of each of the decomposition node at the M-,K decomposition level, i.e., \;is given as (10):  

\; �  �V_`
�aUV�WX� .                                (10) 

From Fig. 3, the bandwidth of the vibration signal from the 

envelope detection is \.�/ prior to wavelet decomposition. In 

order to ensure that the information from different types of 

faults lies in different decomposition nodes, the frequency 

resolution at the M-,K decomposition level, i.e., \;  should be 

less or equal to \^ , i.e., \; b \^ . This limit validates that the 

defect frequency information of different faults would lie in 

different decomposition nodes.  

Figure 4 elaborates the working principle of EWPT using 

simulated vibration data with three different defect frequencies 

at �Y � 500, �� � 533 and �e � 566Hz. Figure 4a plots the 

spectrum of the signal of the incoming vibration signal with 

resonant frequency band as 1500-4500Hz (approximately). 

The positioning of the resonant frequency band depends upon 

machine dynamics (transfer function) and it varies with the 

operating conditions. The overall bandwidth of the vibration 

frequency signal is half of the sampling rate, i.e., 6000Hz. The 

techniques based on WPT decompose the overall vibration 

spectrum into multiple frequency bands. It involves a large 

number of redundant features which do not contain dominant 

fault signatures for fault diagnosis. These redundant features 

have the tendency to mislead the fault diagnostic model due to 

‘curse of dimensionality’ [24] and deteriorate fault detection 

accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In EWPT, prior to extracting features based on WPT, 

envelope detection is applied as in Fig. 4b. Once the envelope 

of the signal is determined, the defect frequency region of the 

overall vibration is filtered out as in Fig. 4c. According to 

Figs. 3-4c, the WPT of the filtered-envelope of the vibration 

spectrum can decompose the signal such that the dominant 

 

Fig. 4a Frequency spectrum of the overall vibration signal 

Fig. 4b Envelope spectrum of the vibration signal 

 
Fig. 4c Filtered envelope spectrum of the vibration signal 

\9*g 

�� �h �\ 

\i 

\j 

Fig. 3 Filtered-envelope of the vibration signal 
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signatures representative of different faults lie in different 

frequency sub-bands. In EWPT, the WPT along with envelope 

detection rather than DFT is used because WPT has the 

tendency to provide multi-resolution analysis.  

After wavelet decomposition of the filtered-envelope 

signal, the RMS value of wavelet decomposition nodes is 

computed as in (11). RMS value based feature extraction is 

extensively used as feature extraction metrics in the literature 

[4, 12, 13]. In (11), 3A,#,;  represents the 7 � ,K coefficient of 

k � ,K decomposition node at M � ,K decomposition level.   

6#,; �  lC
B ∑ 3A,#,;�BADC

=
 .                         (11) 

D. Fault Diagnostic Model:  

Support vector machine is extensively used technique in 

machine fault diagnosis and prognosis [25].  It maps the data 

into higher dimensional space and resolves the problem of 

decision boundary in low dimensional space.  Figure 5 gives 

the orientation of the optimal hyper-plane in binary 

classification problem. The data points nearest to the decision 

boundary are called, support vectors, and help in deciding the 

decision boundary of the hyper plane, represented as svC, sv�, svo, and svp in Fig. 5. 

 

 

 

 

 

 

 

Consider the training dataset q � 1+rs, N#-2 with an input 

rs t uBvand the corresponding output N# t 1�1,12. To find an 

optimal separating hyperplane, each input rs is mapped to 

higher dimensional space via a non-linear mapping, such that ws � x+rs-. There exists a vector y and scalar z that define 

the separating hyperplane as y. ws �  z � 0 as in (12):  

N#+y. ws �  z- | 1 � }#     ~K9�9    y � u� , z � u,      (12) 

where }# | 0 are slack variables and only misclassified 

training samples generate non-zero }#. As in Fig. 5, the 

optimal hyper-plane with maximal margin is equivalent to 

minimizing the value of �y� which may be defined as 

quadratic optimization problem as in (13): 

Jk* C
� �y. y� � � ∑ }#�#DC ,                     (13) 

where � is a constant parameter, called regularization 

parameter, which determines the tradeoff between maximum 

margin and minimum classification error. The optimization 

problem in (13) is quadratic programming problem and can be 

formulated in terms of Lagrangian multipliers [26] as in (14): 

J�3 �+�- �  ∑ �# �	#DC C
�  ∑ �#�;N#N;��rs . r��	#,;DC , 

 ��zM9�, ,� ∑ �#N#�#DC � 0 �*! 0 b �# b �,         (14) 

where �# is non-negative Lagrangian multipliers and � is the 

Kernel function which is equivalent to transforming the input 

feature vector rs to higher dimensional feature space ws as in 

(15):  

��rs, r�� �  �x+rs-, x�r���.                     (15) 

There are many choices of Kernal’s such as RBF (16), 

Polynomial (17) and Hyperbolic tangent (18):  

��rs, r�� � 9:��rs:r��=
.                       (16) 

��rs, r�� � +rs. r� � 1-
.                     (17) 

��rs, r�� � ,�*K+�rs. r� � z-.                 (18) 

In this paper, the performance of the proposed training set 

and feature selection scheme is measured using linear and 

RBF kernel which are most commonly used in the literature 

[3, 27]. 

The proposed model uses two parameters which are to be 

optimized, i.e., regularization parameter (�) and RBF kernel 

parameter (�). In case of linear kernel, � is to be optimized 

and in case of RBF kernel, both � and � are to be optimized. 

For parameter optimization, vibration data are divided into 

two subsets, training dataset (67%) and test dataset (33%). The 

training dataset is used for optimizing the parameters using 

10-fold cross validation [27] and test dataset is used to 

evaluate the performance of the proposed model with the 

optimized parameters. In order to search for the optimal values 

of � and �, � is varied from 2:� to 2C� and � is varied from 2:C� to 2CE [27]. The quantification metric for parameters 

optimization is based on maximal fault detection accuracy. 

The classification (i.e., fault detection) accuracy is measured 

in terms of correctly classified events (�Y%%��($.) to the total 

number of events (��O$()) as in (19):  

h������N �  ��������V
��W��� R 100 %.               (19)  

III. EXPERIMENTAL RESULTS 

A. Data Acquisition:  

The performance of the proposed scheme is evaluated for 

both actual as well as simulated vibration data. This 

subsection presents the details on data acquisition. 

1) Actual Vibration Data:  

In this study, publically available vibration dataset has been 

used, in which different types of faults were created using 

electro-discharge-machining (EDM) [28]. Faulty bearings 

were supporting the shaft of a motor and the load was 2 HP at 

�gC 

�g� 

�go 

�gp 

�C � �� 

Fig. 5 Optimal Hyper-plane in SVM 
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the speed of 1750 rpm. The data were collected through 

accelerometers using 16 channels digital audio tape (DAT) 

recorder and sampled at the rate of 12,000 samples per second 

as in Fig. 6. Data for each of the inner race, ball and outer race 

faults were captured with different severity levels, i.e., a hole 

with diameter of 0.007 inch, 0.014 inch and 0.021 inch.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Simulated Vibration Datasets:  

For simulation studies of EWPT, the vibration data is 

obtained from machine transfer function. The transfer function 

is determined by continuous hammering the rotary machine 

[28]. The transfer function is given by (20) and the most 

common input forces for the vibration signal, i.e., mass 

unbalance, misalignment of the shaft and bearing defect are 

given by (21) – (23) respectively:  

�+�- �  �.��o� ¡¢p�.¢�£¡p.p�¤RCE¥�=
� ¡¢C¦.o�£¡p.p�RCE¥�=¡p.�opRCE§¨�¡�.¢¦¤RCE§© ,   (20) 

i	(��:��'()(�%. �  hCcos +2¬��, � ­C-,              (21) 

i	#�()#®�	.�$ �  �� ∑ hA	��� +2¬7��, � ­	A -BXADC ,       (22) 

i'.(�#�® �  �� ∑ hA' ��� +2¬7�', � ­'A-B�ADC .           (23) 

The harmonic amplitudes h, number of harmonics H, phase 

relationships ­, speed of rotation �� and bearing defect 

frequencies �' are adjusted for these forces to simulate the 

vibration data for inner race, ball and outer race faults with 

different severity [28]. 

B. Performance Evaluation of EWPT:  

In order to evaluate the performance of EWPT, experiments 

are conducted with the test data after parameters optimization 

(technique presented in Subsection II-D). The dominant 

component of envelope bandwidth is taken as \.�/ �60 ,� 200�¯, determined from the experimental vibration 

datasets. The defect frequencies are determined using (1)-(3) 

such that ��� � 145�¯, ��� � 90�¯ and ��� � 117�¯. With 

the given values of envelop bandwidth and defect frequencies, 

the optimal bandwidth of each of the decomposition node at 

the M-,K decomposition level, i.e., \; � 20�¯ or optimal 

decomposition level is M � 3 using (10) and results into ‘8’ 

features according to (9). The performance of the extracted 

features is measured using Linear and RBF kernel. 

Comparative performance evaluation is provided with the 

existing techniques based on WPT.  

1) Performance in case of linear kernel: 

Tables I-II list the fault detection accuracy for the linear 

kernel with the actual and simulated vibration datasets. Table I 

shows that in case of actual vibration data, the classification 

accuracy for the proposed EWPT reaches the maximum value 

at decomposition level ‘3’ as compared to WPT in which 

classification accuracy is maximum at decomposition level 

‘6’. Decomposition level ‘6’ contains ‘64’ features and 

decomposition level ‘3’ contains ‘8’ features. In case of WPT, 

a large number of features contain redundant information and 

misleads the classifier. The classification accuracy of EWPT is 

significantly higher compared to WPT in case of actual 

vibration data, i.e., improved by 11%. In both EWPT and 

WPT, detection accuracy starts decreasing beyond the 

decomposition level at which maximum accuracy is reached. 

The approaches in [4, 11-17] are based on WPT and do not 

contain any criterion for the optimal selection of the 

decomposition level. These analyses show that if 

decomposition level is higher than the optimal threshold, it 

may decrease the classification accuracy. EWPT develops a 

criterion for the optimal decomposition level (refer to where it 

is mentioned in the paper) and classification accuracy is 

maximized at that decomposition level, i.e., ‘3’.  

Table II provides the classification accuracy of the fault 

diagnostic model in case of linear kernel with the simulated 

data. It shows that the classification accuracy of WPT is 

maximized at decomposition level ‘7’ with ‘128’ features  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

whereas in case of EWPT, the classification accuracy is 

maximized at decomposition level ‘3’ with only ‘8’ features. 

The results with linear kernel validate that the proposed 

scheme enhances the classification accuracy, reduces the 

number of features and complexity.   

Fig. 6 Experimental setup 

TABLE I 
FAULT DETECTION ACCURACY  

ACTUAL VIBRATION DATA WITH LINEAR KERNEL 

Decomposition Level WPT  EWPT 

1 65.5556 87.6852 

2 71.6667 89.1567 

3 76.6667 90.5556 

4 78.3333 90.3124 

5 78.8889 90.0000 

6 79.5549 87.7778 

7 77.5417 75.2778 

 

TABLE II 

FAULT DETECTION ACCURACY 

SIMULATED VIBRATION DATA WITH LINEAR KERNEL 

Decomposition Level WPT  EWPT 

1 71.5421 71.1564 

2 71.5485 98.8755 

3 86.8684 100.000 

4 81.7451 99.5448 

5 88.1254 98.9425 

6 92.5965 100.000 

7 100.000 100.000 
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2) Performance in case of RBF kernel: 

Tables III list the fault detection classification accuracy 

using RBF kernel for the actual vibration datasets. In case of 

EWPT, the classification accuracy is maximized at 

decomposition level ‘3’ and in case of WPT, the classification 

accuracy is maximized at decomposition level ‘5’. The fault 

detection accuracy for EWPT is consistently higher as 

compared to WPT, i.e., improved by 12% in case of RBF 

kernel with actual vibration data. Moreover, classification 

accuracy starts decreasing both in case of WPT and EWPT if 

decomposition level is increased beyond ‘5’ and ‘3’ 

respectively. EWPT develops intuitive and analytical 

expressions for optimal selection of decomposition level, i.e., M � 3. It validates that the technique based on WPT also 

require optimal selection of decomposition level otherwise 

classification accuracy can be deteriorated if decomposition 

level is lower or higher than a particular optimal value.  

Table IV lists the classification accuracy in case of EWPT 

and WPT for the simulated vibration datasets. It shows that the 

classification accuracy of EWPT is maximized at 

decomposition level ‘3’ as compared to WPT in which 

classification accuracy is maximized at decomposition level 

‘7’. Classification results with RBF kernel are slightly 

improved as compared to ‘linear’ kernel because RBF kernel 

maps the data into higher dimensional space using the kernel 

function in (16). Overall performance of EWPT validates that 

it does not only enhance the fault detection accuracy but also 

reduces the number of features and complexity of the fault 

diagnostic model.  

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

This paper proposes a novel technique, namely, envelope 

wavelet packet transform (EWPT). EWPT avoids the ‘curse of 

dimensionality’ by extracting features from the filtered-

envelope of the vibration data on contrary to the existing 

schemes based on WPT, which extracts features from the 

overall vibration spectrum. Moreover, a criterion is devised 

for optimal frequency resolution which enhances the strength 

of fault signatures in terms of their diagnostic tendency. The 

results obtained both for the actual as well as the simulated 

vibration datasets validate that EWPT does not only reduce the 

dimensionality of the feature vector and complexity of the 

fault diagnostic model but also promises significant 

performance enhancement in terms of fault detection 

accuracy. Together the theoretical analysis and experimental 

results validate that EWPT has better fault diagnostic 

capability which justifies its massive deployment in future 

fault diagnostic systems.  
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