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Enhancing Multi-Frame Images Using
Self-Delaying Dynamic Networks

Lewis E. Hibell, Honghai Liu and David J. Brown

Abstract— This paper presents the use of a newly created network
structure known as a Self-Delaying Dynamic Network (SDN) to
create a high resolution image from a set of time stepped input
frames. These SDNs are non-recurrent temporal neural networks
which can process time sampled data. SDNs can store input data
for a lifecycle and feature dynamic logic based connections between
layers. Several low resolution images and one high resolution image
of a scene were presented to the SDN during training by a Genetic
Algorithm. The SDN was trained to process the input frames in order
to recreate the high resolution image. The trained SDN was then used
to enhance a number of unseen noisy image sets. The quality of high
resolution images produced by the SDN is compared to that of high
resolution images generated using Bi-Cubic interpolation. The SDN
produced images are superior in several ways to the images produced
using Bi-Cubic interpolation.
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[. INTRODUCTION

MAGE enhancement using a single view of an object is

severely limited by the amount of information contained in
the starting image. Many techniques have been proposed for
interpolation in digital images [1]-[4] which treat the pixels as
values on a 2D grid. [5]-[7] deal with modifying convolution
based techniques to find more optimal interpolation kernels
and methods. As do Anton et al. in [8] who also use irregular
sampling. However due to the fixed nature of these convolution
techniques sharp edges tend to be blurred. Li and Orchard
in [9] and Hong et al. in [10] focus on improving the edge
information usually blurred by convolution methods. These
methods all still suffer from a lack of information which
can only be overcome by increasing the amount available.
This is why work has been done over the past few decades
in the field of data fusion which attempts to integrate other
information during enhancement. Many data fusion techniques
to combine information from multiple classes of image capture
device have been developed to utilise the best features of
each device [11], [12]. The sources can range from visible
and infrared [13] to differing satellite imagery [14]-[19]. The
methods used for fusion are also varied including probabilis-
tic deconvolution [20], conditional probability networks [21]
and neural networks [13]. The most common technique is
wavelet based [14]-[16], [22]. In this paper the interest lies
in information contained within multiple frames originating
from the same capture device. Although the above mentioned
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image fusion techniques could be used on images from the
same device, techniques such as the one pioneered by Tsai
and Huang in [23] were created with multiple images from
the same device in mind. Other methods for multi-frame
enhancement expanding on the work by Tsai and Huang
include [24]-[26] who use Bayesian, back projection and
preconditioned conjugate approaches respectively. The use of
Recurrent Neural Networks (RNNs) to perform multi-frame
enhancement was investigated by Salari and Zhang in [27].
The choice of using RNNs allowed Salari and Zhang to pass
each frame through sequentially. This sequential use of the
input frames requires a network which can store and use
previous inputs. The processing of any temporal pattern is best
performed by a network with such capabilities. This need to
process temporal patterns with neural networks has produced
a number of network structures [28]. Many of which are
based on observations of how time is represented in the brain
[29], [30]. Elman [31] expanded on the network proposed
by Jordan and produced a network with temporal memory
which showed that it was possible for neural networks to
learn temporal relationships. Others such as Hochreiter and
Schmidhuber in [32] attempt to add functionality to nodes
within a network to handle the temporal information. However
this can lead to networks with an unnecessarily high number
of neurons. In [33] Wang et al. state that RNNs do not function
well when presented with problems requiring rate invariance.
Within RNNs relationships between inputs which are separated
by many time steps cannot be represented because the error
signals involved in the back propagation process either blow
up or vanish [32]. This problem with the feedback error was
the main reason for creating the SDNs which allow multi-
frame temporal data to be processed without the requirement
of feedback.

II. SELF-DELAYING DYNAMIC NETWORKS

SDNs are forward flowing network structures with the
ability to store inputs at time ¢ and use them at time ¢ + n
(where n is a number of time periods later). The value of n
is learned during training and can vary if necessary for each
input. It is used here to allow pixels from different temporal
frames to be intelligently combined to form a high resolution
image. Their structure is similar to that of a feed-forward
network with an input layer, an output layer and several hidden
layers. However, the algorithm used to propagate the network
inputs towards the network outputs is unique because it is
almost completely time dependant. The values produced at the
output of the network are formed using the timing of the inputs
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Fig. 1. During processing the network structure changes dependant on the
iteration time. A: Initially network generates output 1 based on input 1. B:
Network then changes links to generate output 2 based on both inputs. C:
Later network generates output 3 based on input 2. D: Finally, all outputs are
ready and no other links are necessary.

combined with the values themselves. They do not feature
any recurrent elements but are still able to process temporal
inputs due to their ability to store information. The network’s
dependence on its temporal structure and lack of feedback
elements make it unsuitable for training with gradient descent
methods. A genetic algorithm was therefore created to allow
the network to evolve to a point at which it is able to complete
the task of enhancing the input images.

A. Temporal Processing

Before being presented to the network the input images are
formed into small blocks of pixels. This allows the number of
inputs being presented to the network to be consistent and also
allows the network to be a reasonable size. The processing
of an SDN happens in what has been called a processing
lifecycle. This lifecycle consists of a series of iterations of an
algorithm shown in Eq. (1). During this lifecycle each input
frame is presented to the network for an equal number of
iterations. In a two frame system the first frame is presented
for the first half of the total iterations. The second frame is
then presented for the second half of the iterations after the
values of the first frame have been absorbed by the network.
There are three types of weights in an SDN, two of which
are time dependant. During each iteration the outputs from
the final layer are calculated first, followed by each layer in
turn back towards the input layer. This reverse approach has
been adopted to allow the data stored within the nodes to be
moved onwards before being replaced. Only on completion
of a lifecycle have the outputs from the network been fixed.
Fig. 1 shows a simplified example of a network lifecycle.
The dynamic connection of the layers during a lifecycle is
activated by logic with the inversons indicator functions in
Eq. (1). Initially at time A only two links are active. These
two links allow one of the output values to be generated based
on one of the inputs. At time B The first two links are now
deactivated and two different links become active, allowing
a different output to be generated from both inputs. At time

C the active links change again to form a third output value.
Finally at time D no active links are required because all
output values are now fixed.

B. Calculation of node output

The output of node y takes one of three main forms
dependant on iteration ¢. The Node weight N and the Link
weights to the nodes in the previous layer L;(i = 1..n) are
used to ascertain which of these three forms to use, Eq. (1).
The node output either stays the same, is reset to zero or is
recalculated based on its available inputs.

LK - X,
y= S, || T————— - Xi| <Ti| #0
n—1
X Uiifgii;l—& — Xz| < Ti}
X iy ST X,—X
[ <)
X [L; <t <4L;][N <t <2N]
+ (1[N <t<2N]) % gy 1)
Where:

is iteration time

is number of nodes in the previous layer

is the node being processed

is one of n nodes in the previous layer

is output of node y at time ¢

are the values from nodes ¢ and j

is the Threshold from % (Learned value)

is Link weight from node ¢ (Learned value)
is Node weight of node y (Learned value)
is Inverson’s indicator (1 if true, O if false)
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Each frame is fed into the first layer of the network
for several iterations, the next frame is then fed to the first
layer for an equal number of iterations. This is repeated until
all frames have been fed into the network. The calculation
of the node output Y; is dependent on the value of the three
types of weights 7;,L; and N.

1) Node Weight N: The node weight N is used to ascertain
when recalculation of a node output should be performed. If
the current iteration ¢ is between the node weight and double
node weight then a recalculation is done otherwise the output
remains unchanged.

2) Link Weight L;: The link weight (L;) is used to deter-
mine if a value coming from node i to node y is ready to
be used in the calculation of the node output. If the iteration
t is between the link weight and four times the link weight
then the value coming from ¢ is included in the calculation
otherwise it is ignored.

3) Threshold Weight T;: The final learned value is the
threshold 7, this is used to judge if the value coming from
node ¢ is within a certain range of the other values being used
in the node.

The calculations for the nodes in the input layer are more
straightforward since the only source of data for these are the
input value to the network. They are allowed to go to zero
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after a number of network iterations in order to stop them
having any more effect on the network. Examining Eq. (1) it
can be shown that if the conditionals are assumed to be true
then the algorithm reduces to an averaging of the input pixels
similar to bilinear interpolation.

C. Training

Due to the nature of SDNs and their unique lifecycle
structure a genetic algorithm was created for training. This
evolutionary approach also allows the combination and further
training of networks trained on different images by creating a
population containing both solutions. This mixed population
can then create new networks featuring the best elements of
each solution. Crossover of the network weights is performed
taking into account the organisation of the weights. Short
subbranches of the network are moved together making it
possible for successful sections to remain complete.

D. Node outputs

For any number N of pixels passed into a node the possible
number of output values is defined by Eq. (2).

N!

N+14+xN "
i "=HN —r)lr!

(@)

It assumes all inputs are different and that any combination of
pixel values will result in a different output value. One possible
output using a 3x3 block segmented implementation of the
network is to perform the equivalent to bi-linear interpolation.
Whereas another possible output of the same network with
different weightings it to output nearest neighbour interpo-
lation. A third possibility is for the system to output all
the pixels which are correct in the low level image in their
correct location and then fill in the “unknown” values with
interpolations of the correct values. The normal functioning of
the network would be to perform whichever process is more
suitable to the current section of the image.

III. COMPARISONS

Two main numerical methods are proposed to ascertain the
relative efficiency of SDNs compared to other algorithms.
These results rely on the existence of a target image and
therefore could not be used to rate the system on a set of
frames for which a target does not exist. Sets of frames for
which targets do not exist can only be assessed by observing
their usefulness to the user of the system. These methods are:
Average Error Per Pixel (AEPP) and Number of Perfect Pixels
(NPP). Each method identifies a different property of the
network which is deemed useful when attempting to generate
a high resolution result. In Eq. (3) and Eq. (4) R is the
reconstructed image and 7T is the target image. Also L,M
are the width and height of the image, and N is the number
of colour bands.

Fig. 2. The left-hand image is an EPP (Error Per Pixel) image: This image
can be used to indicate to a user the locations within the scene which contain
more errors. The right-hand image is an NPP Image: This image can be used
to indicate which locations can be reconstructed exactly

A. AEPP:

AEPPs are calculated according to Eq. (3). They show the
average amount by which a pixel differers from its target
value. A lower AEPP means that the network has successfully
reorganised the information in the input frames to resemble
that of the high level target. AEPPs are used in place of co-
correlation for two reasons. Firstly AEPPs are more directly
linked to pixel values which gives them more meaning. Sec-
ondly, the new image may be correlated correctly with the
target spatially but may be consistently incorrect by several
pixel levels. AEPPs will clearly show these errors whereas
co-correlation would not.

i=12?i12g=1 (|Rijk - Tijk|)
LMN

The errors attributed to each pixel can also be shown by
creating an EPP (Error Per Pixel) image. The darker the
regions in the left-hand figure in Fig. 2, the more difficult
to be reconstructed.

— AEPP A3)

B. NPP:

Equation (4) describes a count of the number of times a
pixel value was exactly the same value as that in the target.
Each of the three colour bands are treated separately so that
a pixel does not have to be correct in all three bands to
be classed as successful. These correct pixels can also be
displayed graphically as shown in the right of Fig. 2 to give
an indication of areas difficult to reconstruct.

ElL%s]illl [(Rijr — Tyjk) = 0]
LMN

These values give a good indication of whether an image is
a good rendition of the original high resolution image. The
importance of each varies based on what is required by the
user. If an image has a bad NPP but a good AEPP then
it suggests that the image is too blurred to gain any real
advantage. If an image has a good NPP but a bad AEPP then it
suggests that the SDN is capable of obtaining accurate results
but is inconsistent in doing so.

x 100 = % correct (4)

IV. RESULTS

The ability of an SDN to perform multi-frame enhancement
was tested by training it on several sets of frames. Each frame
set consisted of two low resolution input frames and one high
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resolution target image. After training the SDN was then given
several more unseen sets of input frames to enhance. The
results of these enhancements were compared to an original
high quality version of the scene and a bi-cubic interpolation
of one of the low resolution input frames. In order to assess
the ability of the SDN to handle noise the low level frames
had noise added before enhancement. The SDN was given
the task of learning how to produce a high resolution image.
The SDN was trained using four of the available nine image
sets the other five image sets were used for the assessment.
Each of the four test image sets was processed by the training
algorithm sequentially. This was repeated several times until
only small changes to the network structure were being made
by the training runs.

A. Image Acquisition

The test image sets were generated using a Polaroid
PDC4350 digital camera. First a single high resolution
(2304x1728) image was taken of an object. The resolution
of the camera was then lowered (1024x768) without moving
either the camera or the object. A low resolution image was
then taken of the same object. The object was then subject
several small movements (Approximately 1mm) and a low
resolution image taken at every location. This produced a set
of several low resolution images and a single high resolution
image of the object. The low resolution images were then
resized to 80x60 and the high resolution to 159x119 in order
to make human visual comparisons easier and to speed up the
training process.

B. Network and Training Parameters

The following values were discovered during experimen-
tation to be sufficient to produce a good solution without
making the network large or the training slow. There is a
population size of 2000 as this allows a fairly diverse pool
of solutions. There are two layers of neurons, this allows
for sufficient combination of inputs but should be increased
if more than two frames are used. There were no hidden
layers used for these results as the nodes in the output layer
contain all functionality of one hidden layer. The lifecycle of
a network was set to be 20 iterations, 10 iterations per frame.
The maximum threshold weight is 100, thresholds below this
should be sufficient to allow a wide range of values but should
not allow all pixel values to be used. There are 2000 mutations
meaning that every child produced will tend to be mutated.
This large value has been chosen as the storage for the network
weights allows for unused values. If these values are changed
by the mutation the behaviour of the network is unaffected.
Also many changes to the weights within the network will
have little or no effect on its ability. Having the mutate rate this
high therefore allows for mutations to occur which will effect
the network characteristics more frequently. 600 children per
generation means that 30% of the population will be replaced
with new networks in every generation. When constructing
the network evolution system this value allows the process
to proceed at a fairly quick steady rate. There are 12 inputs

(4 pixels x 3 colours) to the network for each frame in the
set which for these tests was two frames. The corresponding
output is 27 values (9 pixels x 3 colours).

C. Results Obtained

The following figures and tables (Fig. 3 - Fig. 7) and
(Table I - Table V) show results from the enhancement of
five different image sets degraded with different amounts of
Gaussian and drop-out noise (Drop-out noise forces a number
of pixels to become set to maximum or minimum. The left-
hand images are SDN results and the right-hand images bi-
cubic interpolation results. Also shown are graphs illustrating
the effect of increasing the amount of noise in the input
images. Fig. 8 shows that as the amount of Gaussian noise
is increased the SDN results gain more of an advantage over
the Bi-cubic interpolation method. Fig. 9 shows that for drop-
out noise the advantages of the SDN method increase greatly
compared to that of Bi-cubic interpolation.

Fig. 3. Enhancement of Cactus image without added noise. The results in
Table I show that the Correlation Coefficient and AEPP score higher on the
bi-cubic interpolation images. However the number of correct pixels is higher
using an SDN.

Fig. 4. Cactus image enhanced after addition of drop-out noise with variance
of 0.05. SDN image on the left has removed almost all traces of the noise,
whereas the Bi-cubic interpolation enhanced the noise along with the image.
See table II for numerical comparisons.

Fig. 5. Cactus image enhanced after addition of drop-out noise with variance
of 0.5. With much more noise the Bi-cubic interpolation result is only just
visible (right), whereas the SDN method clearly attempts to reconstruct the
object (left). See table III for numerical comparisons.

3822



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:12, 2007

Fig. 6. Cactus image enhanced after addition of Gaussian noise with mean
0 and variance of 0.01. The SDN result (left) manages to remove more of
the noise and produce a clearer image than bi-cubic interpolation (right). See
table IV for numerical comparisons.

Fig. 7. Cactus image enhanced after addition of Gaussian noise with mean
0 and variance of 0.1. With more Gaussian noise both SDN and Bi-cubic
interpolation struggle to produce a clear high resolution image. However the
SDN result is clearer than the bi-cubic and also scores higher numerically
(Table V)

TABLE I
NO NOISE ADDED

Cubic | SDN || Cubic | SDN Cubic | SDN
Image CC CC AEPP | AEPP NPP NPP
Set 1 0.99 0.98 3.86 4.41 14.88 | 17.69
Set 2 0.99 0.98 5.16 6.75 13.59 9.58
Set 3 0.98 0.97 4.78 6.05 12.61 | 14.80
Set 4 0.99 0.98 3.93 5.00 15.85 | 14.52
Set 5 0.99 0.98 471 5.76 14.59 | 15.73
Average 0.99 0.98 4.50 5.59 14.30 | 14.47

TABLE II
DROP-OUT NOISE WITH VARIANCE 0.05

Cubic | SDN Cubic SDN Cubic | SDN
Image CC CcC AEPP | AEPP NPP NPP
Set 1 0.84 0.97 10.95 5.17 12.00 | 16.47
Set 2 0.88 0.97 11.96 7.46 11.14 9.30
Set 3 0.86 0.96 11.65 6.68 10.36 | 13.96
Set 4 0.87 0.98 10.73 5.70 12.77 | 13.94
Set 5 0.90 0.97 11.40 6.47 11.95 | 14.71
Average 0.87 0.97 11.34 6.30 11.64 | 13.68

TABLE III
DROP-OUT NOISE WITH VARIANCE 0.5

Cubic | SDN || Cubic SDN Cubic | SDN
Image CC CcC AEPP | AEPP NPP | NPP

Set 1 0.28 0.71 58.09 23.33 2.81 8.83
Set 2 0.33 0.76 59.54 24.86 2.63 5.98
Set 3 0.29 0.71 59.51 25.25 2.41 7.27

Set 4 0.31 0.74 58.58 23.84 3.01 7.94
Set 5 0.35 0.75 60.43 26.54 2.84 7.28
Average 0.31 0.73 59.23 24.77 2.74 7.46

TABLE IV
GAUSSIAN NOISE OF VARIANCE 0.01

Cubic | SDN || Cubic | SDN Cubic | SDN
Image CC CC AEPP | AEPP NPP | NPP

Set 1 0.81 0.87 23.72 17.77 1.36 1.93
Set 2 0.86 0.90 23.65 19.20 1.32 1.80
Set 3 0.83 0.87 23.80 19.00 1.41 1.78

Set 4 0.84 0.89 23.32 18.25 1.39 1.84
Set 5 0.88 0.91 23.62 18.81 1.44 1.82
Average 0.84 0.89 23.62 18.61 1.38 1.83

TABLE V
GAUSSIAN NOISE OF VARIANCE 0.1

Cubic | SDN Cubic SDN Cubic | SDN
Image CC CC AEPP | AEPP NPP | NPP
Set 1 0.50 0.60 49.59 33.87 0.66 1.03
Set 2 0.58 0.67 48.21 34.67 0.67 1.00
Set 3 0.52 0.61 49.32 34.94 0.64 1.00
Set 4 0.54 0.64 48.51 34.39 0.66 0.95
Set 5 0.62 0.71 48.32 34.73 0.68 0.96

Average 0.55 0.65 48.79 34.52 0.66 0.99
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Fig. 8. As Gaussian noise variance increases the ability of the bi-cubic
method to reconstruct the image falls away faster than the ability of the SDN.
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Fig. 9. As the amount of drop-out noise increases the benefit of the SDN
becomes more clear as the difference between it and the bi-cubic interpolation
increases.
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V. CONCLUSION

The focus of this paper was to ascertain if SDNs could be
used to perform multi-frame enhancement to an acceptable
level. It has been shown that they can outperform Bi-cubic
interpolation of a single frame when noise is present. As
the level of noise increases the SDNs remain the better
enhancement technique. SDNs can successfully be trained to
rely on information from two different frames in order to
reconstruct a high resolution image successfully. The full range
of uses for SDNs is not yet known. Given their abilities with
temporal information they could be used for many time related
applications. Their abilities with multi-frame image resolution
enhancement could also be taken further. Further work with
SDNs and image enhancement include utilising more than two
frames for enhancement. Modifications to SDNs allowing the
extra information available in stereo images to be used for
enhancement should also be possible.
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