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Abstract—An enhanced particle swarm optimization algorithm 

(PSO) is presented in this work to solve the non-convex OPF 
problem that has both discrete and continuous optimization variables.  
The objective functions considered are the conventional quadratic 
function and the augmented quadratic function.  The latter model 
presents non-differentiable and non-convex regions that challenge 
most gradient-based optimization algorithms. The optimization 
variables to be optimized are the generator real power outputs and 
voltage magnitudes, discrete transformer tap settings, and discrete 
reactive power injections due to capacitor banks.  The set of equality 
constraints taken into account are the power flow equations while the 
inequality ones are the limits of the real and reactive power of the 
generators, voltage magnitude at each bus, transformer tap settings, 
and capacitor banks reactive power injections. The proposed 
algorithm combines PSO with Newton-Raphson algorithm to 
minimize the fuel cost function.  The IEEE 30-bus system with six 
generating units is used to test the proposed algorithm.  Several cases 
were investigated to test and validate the consistency of detecting 
optimal or near optimal solution for each objective.  Results are 
compared to solutions obtained using sequential quadratic 
programming and Genetic Algorithms.  
 

Keywords—Particle Swarm Optimization, Optimal Power Flow, 
Economic Dispatch. 

I.  INTRODUCTION 
OWER Engineers perform special tasks to optimally 
analyze, monitor, and control different aspects of power 

systems.  The main required tasks are economic dispatch, unit 
commitment, state estimation, automatic generation control, 
and optimal power flow (OPF).  The latter is regarded as the 
backbone tool that has been extensively researched since its 
first introduction [1]. 

OPF simply attempts to find the optimal settings of a given 
power system network that optimize a certain objective 
function while satisfying its power flow equations, system 
security, and equipment operating limits.  Several control 
actions, some of which are generators’ real power outputs and 
voltages, transformer tap changing settings, phase shifters, 
switched capacitors and reactors, are adjusted to achieve an  
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optimal network setting based on the problem formulation.  
One of the main difficulties of the OPF problem is the nature 
of the control variables since some of them are continuous 
(real power outputs and voltages) and others are discrete 
(transformer tap setting, phase shifters, and reactive 
injections).  The overall fuel cost function is by far the most 
common objective used in OPF studies.  However, other 
traditional objectives are minimization of active power loss, 
bus voltage deviation, emission of generating units, number of 
control actions, and load shedding.  Restructuring of the 
electric power industry has also introduced new objectives to 
the OPF problem like maximization the social welfare and 
individual supplier’s profit [2;3].         

Various non-classical optimization tools have emerged to 
cope with some of the traditional optimization algorithms’ 
shortcomings.  The main modern optimization techniques are 
genetic algorithm (GA), evolutionary programming (EP), 
artificial neural network (ANN), simulated annealing (SA), ant 
colony optimization (ACO), and particle swarm optimization 
(PSO).  Most of these relatively new developed tools mimic a 
certain natural phenomenon in its search for an optimal 
solution like species evolution (GA and EP), human neural 
system (ANN), thermal dynamics of a metal cooling process 
(SA), or social behavior (ACO and PSO).  They have been 
successfully applied to wide range of optimization problems in 
which global solutions are more preferred than local ones 
[4;5].   

PSO has been previously used to solve the OPF problem.  
Researchers in references [6-8] have attempted to utilize PSO 
to solve the OPF problem considering different objective 
functions.  In the aforementioned work, only continuous 
control settings were considered as optimization variables 
which restrict its applicability to real power systems.  Authors 
in references [9-11] employed PSO to solve the OPF with the 
inclusion of both discrete and continuous optimization 
variables.  Furthermore, they augmented the OPF objective 
function by adding penalty terms to transform the constrained 
OPF into unconstrained one.  This approach usually suffers a 
major difficulty in how to properly select penalty factor 
values.   

In this paper, a discrete PSO algorithm capable of handling 
both discrete and continuous optimization variables is 
proposed to solve the OPF problem.  In the proposed 
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algorithm, a mechanism for handling inequality constraints is 
developed to reinforce constraints avoiding the use of penalty 
factors or augmenting the objective function.  Newton-
Raphson iterative technique is incorporated within the PSO 
algorithm to minimize the power mismatch in the power flow 
equations.  The objectives considered in this study are the 
conventional quadratic function and the augmented quadratic 
function.        

II.   PROBLEM FORMULATION 
The OPF aim is to optimize a certain objective subject to 

several equality and inequality constraints.  It can be 
mathematically modeled as follows: 

      ( , )Min F x u  (1) 
Subject to 
 ( , ) 0g x u =  (2) 

 min max( , )h h x u h≤ ≤  (3) 
where vector x denotes the state variables of a power system 
network that contains the slack bus real power output (PG1), 
voltage magnitudes and phase angles of the load buses 
(VLk,θLk), and generator reactive power outputs (QG).  Vector u 
represents both integer and continuous control variables that 
consist of real power generation levels (PGN) and voltage 
magnitudes (׀VGN ׀  ), transformer tap setting (Tk), and reactive 
power injections (QCk) due to VAR compensations. 
  

A.  Objective Function 
In this study, minimization of different fuel cost functions is 

considered to examine the performance of the proposed 
algorithm.  Objective functions taken into considerations are 
the conventional quadratic function and the augmented 
quadratic function.   
    1)  Fuel Cost: 

The goal of the OPF problem is to find the best network 
settings that minimize the overall fuel cost function while 
imposing all network constraints.  Traditionally, the overall 
fuel cost function for a number of thermal generating units can 
be modeled by a quadratic function (convex and 
differentiable) as follows: 

 2
1

1

( ) $/hr
i N

i i i i i
i

F a b P c P
=

=

= + +∑  (4) 

However, this model neglects the valve point loading effect 
that introduces rippling effects to the actual fuel cost curve.  
Equation (4) is modified by adding an additional sine term to 
account for the valve effects in this manner [12]:  

 2 min
1

1
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This precise modeling creates challenges to most derivative-
based optimization algorithms in finding the global solution 
since the objective is no longer convex nor differentiable 
every where.   
  

B.  Constraints 
 The OPF problem has two kinds of constraints: 
    1)  Equality Constraints: 
 These are the sets of nonlinear power flow equations that 
govern the power system, i.e.  
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where PGi and QGi are the real and reactive power outputs 
injected at bus i respectively, the load demand at the same bus 
is represented by PDi and QDi, and elements of the bus 
admittance matrix are represented by ׀Yij׀ and θij. 

    2)  Inequality Constraints: 
 These are the set of continuous and discrete constraints that 
represent the system operational and security limits like the 
bounds on: 
1. The generators real and reactive power outputs; 
 min max ,  1, ,

i i i
NG G GP P P i G≤ ≤ = K  (8) 

 min max ,  1, ,
i i i

NG G GQ Q Q i G≤ ≤ = K  (9) 

2. Voltage magnitudes at each bus in the network; 
 min max ,  1, ,i i iV V V i N≤ ≤ = K  (10) 
3. The discrete transformer tap settings; 
 min max ,  1, ,i i i NT T T i T≤ ≤ = K  (11) 
4. The discrete reactive power injections due to capacitor 

banks; 
 min max ,  1, ,

i i i
NC C CQ Q Q i C≤ ≤ = K  (12) 

Note that PGi, QGi, and Vi are continuous variables while Ti and 
QCi are discrete ones. 
5. The transmission lines loading; 
 max ,  1, ,

i iL L NS S i L≤ = K  (13) 

III.  THE PROPOSED HYBRID ALGORITHM 
Two scientists, Kennedy and Eberhart, first introduced PSO 

in 1995 as a new heuristic method [13].  The original PSO 
model was intended to handle only continuous nonlinear 
optimization problems.  However, further improvement 
elevated the PSO capabilities to solve a wider class of 
problems.  References [14-16] present more information on 
PSO recent developments.  The concept behind this optimizer 
came from early attempts conducted by Eberhart and Kennedy 
to model the flocking behavior of many species, like birds or 
school of fish, in their food hunting.  They realized that such 
species try to approach their target in an optimal manner 
which resembles finding the optimal solution to any 
mathematical optimization problem.   

A swarm consists of number of particles that evolve or fly 
throughout the problem hyperspace to search for optimal or 
near optimal solution.  The coordinates of each particle 
represent a possible solution with two vectors associated with 
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it, the position (Xi) and velocity (Vi) vectors. In N-dimensional 
search space, 1 2[ , ,..., ]i i i iNX x x x=  and 

1 2[ , ,..., ]i i i iNV v v v=  are the two vectors associated with 
each particle i.  During their search, particles interact with 
each others in a certain way to optimize their search 
experience. Different variants of the particle swarm paradigms 
were proposed but the most general one is the gbest model 
where the whole population is considered as a single 
neighborhood throughout the optimization process [17].  
Throughout their flying experince, the particle with the best 
solution shares its position coordinates (gbest) information 
with the rest of the swarm.  Then, each particle updates its 
coordinates based on its own best search experience (pbest) 
and gbest according to the following equations: 
 1

1 1 2 2c r ( ) c r ( )k k k k k k
i i i i iv wv pbest x gbest x+ = + − + − (14) 

 1 1k k k
i i ix x v+ += +  (15) 

where 
− c1 and c2 are two positive constants, they keep balance 

between the particle’s individual and social behavior 
when they are set equal; 

− r1 and r2 are two randomly generated numbers with a 
range of [0,1] added in the model to introduce stochastic 
nature; 

− w is the inertia weight and it is a linearly decreasing 
function of the iteration index:  

 max min
max( )

. .

w
w k w k

Max Iter

w −
= − •⎛ ⎞

⎜ ⎟
⎝ ⎠

 (16) 

− k is the iteration index. 
   

The developed hybrid approach combines PSO technique 
with Newton-Raphson based power flow program in which 
the former technique is used as a global optimizer to find the 
best combinations of the mixed type control variables while 
the latter serves as a solver to the nonlinear power flow 
equations.  The PSO employs a population of particles or 
possible solutions to explore the feasible solution hyperspace 
in its search for an optimal solution.  Each particle’s position 
is used as a feasible initial guess for the power flow 
subroutine.  This method of multiple initial solutions can 
provide better chance of detecting an optimal solution to the 
power flow equations that would globally minimize the 
objective function.     

A.  Constraints Handling Methods 
Various methods were proposed to handle constraints in 

evolutionary computation optimization algorithms just like in 
the case of the PSO.  The most common used constraint 
handling methods are [18]: 
1. Feasible solution preservation: in this approach, intial 

solutions are placed in the feasible search space and 
maintain within by using an update mechanism that 
generates only feasible solutions. 

2. Rejection of infeasible solution: this method rejects any 
solution that violates the feasible search space. 

3. Penalty function: in which a penalty factor is added to the 
objective once any constraint violation occurs. 

4. Solution repair method: this approach converts the 
infeasible solution to a feasible one by performing special 
operations. 

Deciding on the proper constraints handling method is 
highly reliant on the problem’s nature.  Reference [18] 
indicates that in the solution repair method, the process of 
reinstating the infeasible solution to a feasible one can be as 
challenging as solving the original problem.  Disadvantages of 
the penalty function method are presented in the introduction 
part of this paper. 
 
    1)  Hybrid Constraints Handling Mechanism 

A new constraint handling technique that combines the 
preserving feasible solution and infeasible solution rejection 
methods is proposed to handle different constraints imposed 
on the OPF problem.  In the developed mechanism, each 
element of the particle’s position vector is randomly initialized 
within its feasible range.  After measuring the fitness of each 
particle and updating its position vector, the new position is 
checked for feasibility.  If a given element of the position 
vector exceeds its restrictions, this position is discarded and its 
value is restored to the best position achieved by that particle, 
i.e. pbest.  This reinstatement operation keeps that infeasible 
particle alive as a possible candidate that could find the 
optimal solution instead of a complete rejection that eliminates 
its potential in the swarm.     

IV.  SIMULATION RESULTS AND DISCUSSION 
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Fig. 1 IEEE 30-bus standard test system 
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Simulation tasks were carried out in Matlab® computing 
environment and the standard IEEE 30-bus test system was 
used to validate its potential.  It consists of six generating units 
interconnected with 41 branches of a transmission network to 
serve a total load of 189.2 MW and 107.2 Mvar as shown in 
Fig. 1.  Detailed description of the system’s data is presented 
in [19].   

Note that the original system has two capacitors banks 
installed at bus 5 and 24 with ratings of 19 and 4 Mvar 
respectively.  The following cases were considered: 

Case study 1: The smooth fuel cost function in (4) is 
minimized considering only the continuous control variables, 
i.e. real power outputs and voltages at voltage-controlled 
buses.  A comparison of results obtained using the PSO to 
those obtained using MATPOWER, MATLAB-based 
software that uses sequential quadratic programming (SQP) to 
solve the OPF, and GA are shown in Table I.  MATPOWER is 
capable of solving the OPF when the objective is represented 
in polynomial form and is only capable of handling continuous 
variables.  Results clearly indicate that PSO achieved better 
solution when compared to other methods. 
 

TABLE I 
PERFORMANCE OF SQP, PSO AND GA FOR CASE 1 

Method SQP PSO GA

Pg1 41.5400 43.6106 42.0125
Pg2 55.4000 58.0603 56.1285

Pg13 16.2000 17.5555 16.8002
Pg22 22.7400 22.9976 22.8546
Pg23 16.2700 17.0561 16.7745

Pg27 39.9100 32.5670 37.7854
V1 0.9820 1.0000 0.9975
V2 0.9790 0.9996 0.9874

V13 1.0640 1.0594 1.0624
V22 1.0160 1.0116 1.0125
V23 1.0260 1.0214 1.0247
V27 1.0690 1.0372 1.0474

Objective 576.8920 575.4108 576.2471

Fuel Cost ($/hr)

 
 
Case study 2: Since PSO is capable of handling 

optimization problems in which the objective is not required to 
be convex or differentiable, the fuel cost function is 
augmented with an additional sine term as in (5).  This 
addition increases the degree of non-smoothness of the 
objective function significantly.  As a result, more number of 
particles is needed to explore this complex solution 
hyperspace efficiently. Table II tabulated the results obtained 
using different swarm’s size. Increasing the swarm’s size 
improved the PSO performance in achieving better results at 
the expense of computational time.  

V.  CONCLUSION 
The investigations presented in this paper examine the 

applicability of PSO in solving the OPF problem under 
different formulations and considering different objectives.  

The obtained results are partially compared to the outcomes of 
other optimization techniques.  A hybrid constraint handling 
strategy is proposed to preserve only feasible solutions 
without the need to use penalty factors.  The PSO is combined 
with Newton-Raphson algorithm to form a hybrid optimizer 
that can solve the discrete OPF problem with the inclusion of 
valve loading effects.  This highlights the PSO capability of 
handling optimization problems with more complex modeling 
of system objectives and/or constraints.  PSO performance and 
robustness in its search for optimal solution is highly 
dependant on its parameters tuning and the shape of the 
objective function.  Objective functions with smooth shapes 
tend to require less number of particles and iterations to 
converge to the optimal solution while the ones with rough 
surface would require more number of particles and iterations 
to reach the same quality of solution.  
 

TABLE II 
RESULTS OF CASE 2 UNDER DIFFERENT SWARM’S SIZE 

20 30 100

Pg1 47.0677 47.0947 47.1264
Pg2 42.9114 42.3594 71.3658

Pg13 8.7898 35.9024 8.9719
Pg22 44.7279 37.3588 37.3909
Pg23 8.9825 8.8255 8.9935

Pg27 42.0437 20.9590 20.7771
V1 1.0000 1.0000 1.0000
V2 1.0988 1.0086 1.0965

V13 1.0911 1.0166 1.0365
V22 1.0866 1.0815 0.9821
V23 1.0480 1.0568 1.0484
V27 1.0289 1.0800 1.0876
QC5 33.0000 16.0000 29.0000

QC24 35.0000 15.0000 12.0000
T6-9 1.0400 1.0100 1.0200
T6-10 1.0100 1.0000 0.9900
T4-12 1.0400 0.9900 1.0200
T27-28 0.9900 1.0300 1.0400

Objective 658.4158 645.3329 615.2496  
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