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Enhanced Multi-Intensity Analysis in Multi-Scenery
Classification-Based Macro and Micro Elements

R. Bremananth

Abstract—Several computationally challenging issues are
encountered while classifying complex natural scenes. In this
paper, we address the problems that are encountered in rotation
invariance with multi-intensity analysis for multi-scene overlapping.
In the present literature, various algorithms proposed techniques
for multi-intensity analysis, but there are several restrictions in
these algorithms while deploying them in multi-scene overlapping
classifications. In order to resolve the problem of multi-scenery
overlapping classifications, we present a framework that is based
on macro and micro basis functions. This algorithm conquers the
minimum classification false alarm while pigeonholing multi-scene
overlapping. Furthermore, a quadrangle multi-intensity decay is
invoked. Several parameters are utilized to analyze invariance
for multi-scenery classifications such as rotation, classification,
correlation, contrast, homogeneity, and energy. Benchmark datasets
were collected for complex natural scenes and experimented for
the framework. The results depict that the framework achieves
a significant improvement on gray-level matrix of co-occurrence
features for overlapping in diverse degree of orientations while
pigeonholing multi-scene overlapping.

Keywords—Automatic classification, contrast, homogeneity,
invariant analysis, multi-scene analysis, overlapping

I. INTRODUCTION

MULTI-INTENSITY analysis (MIA) in multi-scenery

classification and pattern analysis is an important task

performed to address problems when diverse anisotropic or

isotropic patterns occur in textures. Most of the applications

of MIA in computer vision, image processing, multimedia, and

medical image analysis [1], [19], [20] are required to enhance

the framework of multi-scenery classification. However, the

physical properties and frequency components of anisotropic

textures are frequently modified. On the other hand, frequency

components of isotropic textures are not altered substantially

at diverse orientations. Isotropic textures provide the same

physical properties in all directions [12], [20]. Algorithms

that are currently available are extended to other varieties

of applications such as medical image analysis, industrial

automation, biomedical image processing, remote sensing,

and other related fields [1]-[4]. In the field of invariant

pattern analysis (IPA), MIA plays a vital role in making a

classification of inter- and intra-patterns obtained from the

complex scene with diverse signals in diverse angle variations.

In general, natural and non-natural patterns are obtained

from any two-dimensional scene with different signal

variations [15]. They fit in either anisotropic or isotropic

classifications based on their interior formations. The

anisotropic textures have physical characteristics that are
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different in diverse directions, and their frequency components

modify significantly in dissimilar directions. However,

isotropic textures provide the same physical properties in

all directions, and their frequency components do not alter

appreciably at diverse orientations. MIA provides a significant

requirement for pattern analysis and distinguishes the

overlapped objects. Furthermore, in texture features analysis,

MIA utilizes to achieve high inter-class discrimination while

less intra-class unpredictability stumbles upon the patterns

[15].

Several works were proposed using MIA for IPA in the

current literature [1], [2], [8], [19]. However, the problem of

MIA-based location [5], rotation, and scale IPA is still an

open issue for various real-world computer vision applications.

The ultimate aim of all the previously proposed algorithms

is to enhance the classification efficacy instead of fulfilling

transformation invariants. This is our motivation in this paper–

to present a framework for MIA. In addition, work here is also

an enhanced version of our previous paper [1], [19].

Generally, texture analysis is categorized into two types:

Structural [5] and statistical [6], [7] texture analysis. In the

structural approach, the active-region-of-interest (AROI) is

taken as a pool of picture elements and its property texture

is utilized in order to classify similar active objects [8], [9],

[18]. However, IPA can be performed by the sequence-of-chain

of connections in the AROI for each frame appearing in

a multi-scenery classification. A chain of connections is

an essential feature to obtain better classification efficacy.

Based on diverse poses of each frame appearing in a scene,

the computing parameters are: asymmetrical, arbitrariness,

clumsiness, gaucherie, hardness, inelegance, sheerness, and

stiffness [1], [10], [19]. In the statistical texture analysis, the

properties of texture AROI are compared with the pixel of

reference regions. Normally, statistical algorithms have Fourier

transforms, wavelets, convolution filters, co-occurrence matrix,

spatial autocorrelation, and fractals [13], [14]. A fusion

approach of both methods is required where larger diverse

characteristics appear in the texture.

In this paper, we present a framework for MIA that is based

on [1], [19]. This algorithm belongs to the category of a fusion

approach that includes the characteristics of detecting macro

and micro texture elements (TE). Once the boundaries of the

TE are identified, a block of TEs is grouped together based

on its structural, primeval, and spatial measures. The primeval

size and its spatial interconnection of TE are concerned

with a confined environ of pixels [1]. A set of ill-connected

TEs is called Micro-Texture-Elements (MITE). On the other

hand, if a set of TEs has a divergent silhouette and habitual

association of connections, then those TEs are referred to as
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Macro-Texture-Elements (MATE).

MITE and MATE are the vital parameters for enhanced

multi-intensity analysis (EMIA) [1], [11], [19]. The properties

of anisotropic or isotropic textures’ intensity are associated

with MITEs and MATEs when the intensity varies from micro

to macro. A group of TEs is analyzed for the classification

of texture patterns. Based on fundamental characteristics that

appear in the structural, primeval, and spatial measures in

the TE, the structure and statistical multi-intensity analysis

method works to enhance the feature extraction of textures and

address the problem of minimizing the overlap of visibility and

maximizing the classification accuracy.

The remainder of this paper has been organized as follows:

Section II describes the framework for EMIA. Section III

illustrates the results and analysis of the framework, and the

concluding remarks are presented in Section IV.

II. FRAMEWORK FOR EMIA

Fig. 1 shows the framework of EMIA. This framework

has three phases. In first phase, a sequence of operations

is performed including MIA ratio analysis, computation

of minimum area window of overlap, and calculation of

cumulative deviation textures. A basis function has been

formulated based on the result obtained in the first phase.

The basis function, boundary of TE construction, and intensity

deviation with minimum AROI are the sequence of operations

performed in the second phase of the framework. The third

phase computes quadrangle Block-of-Pixel (BOP), MITE and

MATE statistical analysis, and MIA aliasing.

A. Ratio Analysis

Assume that N sets of Block-of-Windows (BOW) appear in

the texture portion. The middle portion of the BOW consists

of a set of coordinates that are represented as (Φj ,Ψj) , j =
1, · · ·N . The principal BOWs are denoted as (Φp

j ,Ψ
p
j ), j =

1, · · ·N . In a BOW, the upper-left and lower-right coordinates

are represented as (Ψm,Ψn) and (Φm,Φn), respectively. For

simplicity, the BOW size can be represented by its radius

Υj j = 1, · · ·N and two corners of the BOW size are

characterized as Υm,Υn. The MIA ratio has been analyzed

based on aforesaid properties.

B. Block-of-Windows Overlapping

Computing the minimum area BOW overlap is mainly for

obtaining the basis function of this framework. Three factors

are primarily involved in the basis function formulation such

as MIA ratio of the texture, a minimum area of BOW, and

cumulative deviation from the primarily position of BOW.

The minimum area BOW has been computed by finding

the ratio between two primary BOW coordinate positions

(Ψm,Ψn) and (Φm,Φn). In order to compute minimum

overlap positions, a process of merely moving the BOW is

required in the middle portion of the texture.

C. Textures Deviation

In anisotropic or isotropic texture patterns, a larger

divergence appears because its primary coordinates deviate

significantly. In the computation of cumulative deviation, it

is an essential process to consider the MIA minimum and

maximum ratios and area of the BOW overlap. Obviously,

BOW size cannot be capricious due to the nature of its texture

in MIA. Consequently, the primary deviation of appearance

of the BOW is assumed to be Υp
j and its sequence is Υm,

j = 1, · · ·N .

D. Basis Function Formulation

Formulation of a basis function is based on three factors:

MIA ratio of the texture, a minimum area of BOW, and

cumulative deviation from the primarily position of BOW. The

basis function has been designed as a linear arrangement of

the individual basis function that is based on the parameter

[1],

Γ = �(b) + δψη(b) + υ(b), b = 1 · · ·m, (1)

where m denotes the number of BOW, �(b), η(b) and υ(b)
represent the MIA ratio, minimum area the BOW overlap, and

cumulative deviation, respectively, while ψ is a scaling factor

used to compute the minimum area of the BOW overlap. The

parameter δ represents weight for the diverse overlapping of

BOW, and Γ denotes MIA intensity on overlapping of BOW

in AROI.

The basis function of EMIA is defined as

�(b) =

N∑
g=1

ηg(b), b = 1 · · ·m, (2)

η(b) =

⎧⎪⎨
⎪⎩
1− e−τ2/σ, if |τ | > 0,

1/2, if |τ | = 0,

0, if |τ | < 0,

(3)

where τ is an appraisal of BOW overlapping and σ denotes a

bend factor for controlling EMIA.

υ(b) =

N∑
i=1

	i(b), b = 1 · · ·m. (4)

E. Construction of Texture Elements

Locality and topology are important parameters when MIA

is performed on the texture features. These two parameters

are primarily involved in the property of TE when BOP

consistently appears in the BOW. Generally, BOP is a set of TE

that constitutes a meaningful property when texture features

are encountered.

TE property constitutes based on two main factors such

as the shape of its BOP and basis function formulation.

The boundary of the TE is mainly based on BOW texture

overlap. The overlap of textures normally has a combination

of hidden areas. Recovering these hidden texture patterns from

the overlapped portion is a challenging task. It can be done
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Fig. 1 A proposed framework for enhanced multi-intensity analysis

by sampling its signals into a sequence of quadrangles. The

sampling error is also compensable. That is why, we have

chosen the TEs for EMIA in the connected neighboring of

pixels. The EMIA of textures is viewed as a tessellation of

the quadrangle. The diverse area is a loosely or logically

connected BOW. A tessellation is a method for generating

a 2D plane. It reoccurs in the geometric quadrangle or other

shapes with roughly no overlaps and fissures [1], [19].

Any overlapped TE textures can be decayed into a set

of intensity approximation pixels. Each BOW consists of

quadrangle TEs of the same size. In the diverse overlapped

BOW, every TE may have different connected components of

BOP. They are contributed diverse natures of features.

In the boundary TE construction, we have to consider the

overlapped diverse textures. The quantity of its patterns may

have analogous properties or related characteristics. However,

the TE can have a huge divergence of nature and provide

the entire difference in the overlapping locations [1]. EMIA

for the TE construction analysis is required to improve the

discrepancies in texture intensities.

From (1), Γ provides EMIA deviation on the overlapping of

AROI. It has �(b), δψη(b), and υ(b). The minimum area BOW

overlap is controlled by δ. The boundary TE construction is

based on the overlapping of intensity on the texture. Based on

research, we found that δ has to be assumed, as in (5), when

boundary TE construction is carried out. The computation

result of first phase in the framework and basis function is

involved in the construction of the TE boundary.

ρ =

⎧⎪⎨
⎪⎩
0.1, if δ = 0,

0.5, if δ > 0,

0.9, if δ < 0.

(5)

F. Minimum AROI Intensity Deviation

The minimum AROI for intensity deviation is another

important task in the framework. Once the texture pattern is

materialized on AROI. It is decayed into a set of intensities of

diverse BOW, and each BOW consists of a BOP quadrangle.

Intensity contribution of each quadrangles has a diverse TE.

For this reason, intensity deviation with minimum AROI

requires a connected TE arrangement for each BOP. Perhaps,

two dissimilar TEs with diverse intensities may be exactly

similar or entirely diverse. Moreover, the scattering of intensity

deviation in the texture patterns, especially on the overlapping

BOW, is required for the analysis of TE and its variance. The

intensity deviation λ denotes the following in (6).

λ =

{
mb(i, j) = 0, if i > m||j > n,

mb(i, j) = img(i, j)δ, if otherwise.
(6)

G. Quadrangle BOP

Quadrangle BOP is computed based on the spatial TE

relative to the plane surface of the texture. We can identify
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the BOP whether it appears inside or outside or not on the TE

BOP at all. It is described in (7).

χ =

⎧⎪⎨
⎪⎩
not on, if Ax+By + Cz + d <> 0,

inside, if Ax+By + Cz + d < 0,

outside, if Ax+By + Cz + d < 0,

(7)

The hierarchy of quadrangle BOPs is utilized to represent three

dimensional space. Medical imaging and other automation

computer vision applications that require Quadrangle BOP

cross sections [17].

H. MITE and MATE Statistical Analysis

Statistical analysis of MITE and MATE is a computationally

challenging task for building MIA pixel regions. The statistical

relationship between MITE and MATE for BOW can be

computed based on the quadrangle of BOP and its neighboring

signals. The mean of MITE and MATE is computed and

described as

μ =

∑λ
i=1

∑λ
j=1 mb(i, j)

κ2
. (8)

The variance computation of MITE and MATE is described

as

ν =

∑λ
i=1

∑λ
j=1[abs(mb(i, j))− μ]

λ2
. (9)

The standard deviation computation of MITE and MATE is

described as

σ =
√
ν. (10)

I. Aliasing on EMIA

In EMIA, when texture patterns are sampled, an aliasing

effect causes diverse signals to be indistinguishable. This

distortion appears when certain consequences occur in the

reconstructed signals. BOW and BOP signals are different

from the discrete samples and the original continuous signals

in BOP variations [13].

The computation of anti-aliasing makes the EMIA texture

signals more distinguishable when compared to the normal

analysis. As per the Nyquist sampling rate, the minimum

sampling rate is required to avoid the aliasing effect, especially

in texture signals. The sampling rate is normally double the

highest frequency (hf ), which is encountered in non-zero

intensities, i.e., Nr = 2hf .

In general, sampling can be either in the temporal or spatial

domain. EMIA anti-aliasing is mainly concerned with the

spatial domain. Therefore, the space domain of texture patterns

are considered. In the time domain, sampling is in time Δt and

the Nyquist frequency is computed as Nf = 1/2Δt, whereas

in the spacial domain, the BOP distance is Δ and Nyquist

wavenumber becomes Nk = 1
2
2π
Δ = π

Δ .

If the measured BOP frequency is higher than the Nyquist

frequency, then it will be folded back to the lower frequency.

In order to properly make spatial signals among the BOP

more distinguishable, we have to avoid the spatial aliasing

among the intensity variations, which means that the constraint

Nk > k should be satisfied. Thus, the minimum BOP space is

represented as Δ = λ/2, where λ represents the wavelength

of the signal.

In EMIA, artifacts appear in the textures when signal

variations occur on the discrete sampling. It was also affected

by the errors due to discrete measurements. In order to avoid

aliasing between the BOP, we require the Nyquist constraint.

Furthermore, texture BOP separation Δ should also be less

than the distance between the measurement and source md,

aperture as Δ < md. Based on research, if a spatial wave

length (λ) is 0.2, then BOP spacing becomes Δ = 0.2/2 =
0.1 m. A hologram is required for PSNR. If it could be 60dB

and the spatial resolution is 0.1 m, then the spatial distance

is computed as md < (0.1 ∗ 60)/27.2875271(20 ∗ pi ∗ log(e))
= 0.21098 ≈ 0.2 and BOP spacing should have a constraint

of 0.1 m < 0.2 m.

III. EMIA IMPLEMENTATION AND RESULT ANALYSIS

Benchmark data sets have been collected to test the

algorithms of the proposed framework. Algorithms are

implemented, debugged, and tested in MATLAB with diverse

textures. Experiments have been carried out in three phases of

the framework. EMIA of overlap textures was analyzed with

different odd numbers of intensity factors λ = 1, 3, 5, ..., 15.

The results reveal that multi-intensity of textures is confined

when λ is incremented by an odd number of factors. While

applying an even number of intensity factors, they also provide

the same effect in the texture patterns.

In multi-scenery classification, gray-level matrix of

co-occurrence features (GMCF) can be employed to classify

the distinct patterns [16]. Furthermore, results disclose

that these feature sets can improve the performance of

EMIA. Based on the performance metrics such as contrast,

homogeneity, correlation, and energy, 20–30% of more

performance was given by EMIA than the MIA [1][19]. Fig. 2

shows multi-scenery EMIA textures with intensity factors λ
from 1 to 15, by step 2.

A. Contrast Metrics

An intensity contrast Cm metric is employed to measure the

performance between BOW and its neighbors over the entire

dimension of the textures. The contrast metric Cm is described

as

Cm =
n∑

i=1

n∑
j=1

|BOWi −BOWj |2Gbow(i, j). (11)

Contrast metric of texture feature was measured based on

tests performed with 220 data sets. The mean of minimum

contrast was 1.1012, and the maximum mean contrast was

0.71121. In Table I, the first row exemplifies contrast metrics.

It reveals that the EMIA framework significantly reduced

textures’ contrast and made them suitable for multi-scenery

classifications.
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Multi-Scenery EMIA,  = 1 Multi-Scenery EMIA,  = 3 Multi-Scenery EMIA,  = 5 Multi-Scenery EMIA,  = 7

Multi-Scenery EMIA,  = 9 Multi-Scenery EMIA,  = 11 Multi-Scenery EMIA,  = 13 Multi-Scenery EMIA,  = 15

Fig. 2 Multi-scenery EMIA textures with intensity factors λ from 1 to 15, by step 2

TABLE I
MIA [1] AND EMIA [19] MEASURES OF METRICS

Properties Min.
MIA[1]

Max.
MIA[1]

Min.
EMIA[19]

Max.
EMIA[19]

Contrast 1.2099 0.7491 1.1012 0.71121
Homogeneity 0.9459 0.9636 0.9632 0.9833
Correlation 0.9334 0.9587 0.9532 0.9872
Energy 0.3322 0.3427 0.6434 0.7387

B. Homogeneity Metrics for EMIA

Homogeneity is a metric. It is employed to measure the

intensity proximity of the distribution of BOP. The quadrangle

of the GMCF can be measured by homogeneity metrics. These

features also represent texture diagonals and the unique signal

variations of the textures as well. This is described as

Hm =
n∑

i=1

n∑
j=1

Gbow(i, j)

1 + |BOWi −BOWj | . (12)

The minimum and maximum homogeneity Hm of texture

features were 0.9632 and 0.9833, respectively. Homogeneity

for EMIA reveals that the minimum and maximum distribution

of BOP were improved significantly when compared to that

of MIA. This is depicted in the second row of Table I.

C. EMIA Correlation Metrics

Correlation metric is a measure of the MIA that has been

analyzed as

Rm =
n∑

i=1

n∑
j=1

(BOWi − μi)(BOWi − μj)Gbow(i, j)

σBOWiσBOWj

. (13)

The minimum and maximum EMIA’s correlation Rm

was 0.9532 and 0.9872, respectively. The results reveal

that minimum and maximum GMCF correlation have been

improved significantly. The third row of Table I is depicted

for correlation metrics.

D. EMIA Energy Metrics

The sum of the square of GMCF is called energy of the

EMIA. This is described as

em =

n∑
i=1

n∑
j=1

Gbow(i, j)
2. (14)

The minimum and maximum MIAs of energy em were

0.6434 and 0.7387, respectively. These measures reveal that

minimum and maximum GMCF energies were improved

significantly. In Table I, the fourth row depicts the energy

metrics.

E. Diverse Intensity Factors Analysis

In the result analysis, multi-scenery textures were analyzed

with EMIA algorithms. Intensity factors (λ) have been

incremented from 1 to 15 by step 2 for the analysis of diverse

texture behaviors. BOW of GMCF was rotated in diverse

angles for analysis. The results are shown in Fig. 3 with

θ = 135o. They reveal that if λ is increased, then its texture

measures such as correlation, energy, homogeneity metrics

are also improved significantly. Furthermore, texture contrast

was minimized considerably. Fig. 6 depicts comparative result

of the previous approach MIA [1][19] and proposed EMIA

framework of this paper. Four metrics were analyzed based

on the result of the EMIA framework. The minimum and

maximum intensity variations were observed. The results

disclose that the performance of the proposed method has

enhanced multi-scenery texture features.
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Fig. 3 Result of multi-scenery EMIA textures with odd number of intensity factors λ from 1 to 15, by step 2 and θ = 135.

Cherry Textures’ EMIA, λ = 1 Cherry Textures’ EMIA, λ = 3 Cherry Textures’ EMIA, λ = 5 Cherry Textures’ EMIA, λ = 7

Cherry Textures’ EMIA, λ = 9 Cherry Textures’ EMIA, λ = 11 Cherry Textures’ EMIA, λ = 13 Cherry Textures’ EMIA, λ = 15

Fig. 4 EMIA of three overlapping textures with different even number of intensity factors

IV. CONCLUSION

The problem of the multi-scenery taxonomy in diverse

rotation has been addressed in this paper by applying

a framework of enhanced multi-intensity analysis. This

framework consists of micro and micro basis functions.

These functions have aptly enhanced and been applied in

natural multi-scene classifications and its overlapping pattern.

We found that this framework conquered the minimum

classification false alarm while pigeonholing the problematic

overlapped multi-scene patterns. In addition, a quadrangle

multi-intensity decay was invoked to resolve the MIA

inconsistences. To reveal the efficacy, rotation-invariant,

classification, correlation, contrast, homogeneity, and energy

parameters were utilized to analyze invariants. The computed

BOP was utilized to locate the overlapping regions in order to

minimize classification and maximize the rendered visibility.

Based on BOP, for minimizing multi-BOW, the textures

were decayed into a quadrangle. The parameters such as

rotation, classification, correlation, contrast, homogeneity, and

energy were utilized to analyze invariant for multi-scenery

classifications. Metrics’ results reveal that the proposed

framework is suitable to be incorporated in a multi-BOW

environment and other multi-scenery classifications. In the

near future, a view of n-dimensional BOW perception-based

online training of BOW will be suggested to estimate the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

491

0 2 4 6 8
0

0.5

1

1.5

2
x 104 EMIA θ = 135, λ =1

0 2 4 6 8
0

0.5

1

1.5

2
x 104 EMIA θ = 135, λ =3

0 2 4 6 8
0

0.5

1

1.5

2
x 104 EMIA θ = 135, λ =5

0 2 4 6 8
0

0.5

1

1.5

2
x 104 EMIA θ = 135, λ =7

0 2 4 6 8
0

0.5

1

1.5

2

2.5
x 104 EMIA θ = 135, λ =9

0 2 4 6 8
0

1

2

3

4

5
x 104 EMIA θ = 135, λ =11

0 2 4 6 8
0

1

2

3

4

5

6
x 104 EMIA θ = 135, λ =13

0 2 4 6 8
0

2

4

6

8

10
x 104 EMIA θ = 135, λ =15

Fig. 5 EMIA of overlapping textures for GMCF from 1 to 8 for three overlapping textures
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diverse intensity variations of textures.
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