
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

985

Abstract—The topic of enhancing security in XML databases is

important as it includes protecting sensitive data and providing a
secure environment to users. In order to improve security and provide
dynamic access control for XML databases, we presented XLog file
to calculate user trust values by recording users’ bad transaction,
errors and query severities. Severity-aware trust-based access control
for XML databases manages the access policy depending on users'
trust values and prevents unauthorized processes, malicious
transactions and insider threats. Privileges are automatically modified
and adjusted over time depending on user behaviour and query
severity. Logging in database is an important process and is used for
recovery and security purposes. In this paper, the Xlog file is
presented as a dynamic and temporary log file for XML databases to
enhance the level of security.

Keywords—XML database, trust-based access control, severity-

aware, trust values, log file.

I. INTRODUCTION
ML (Extensible Markup Language) is widely used in
many applications as it has the ability to store, exchange

and transfer data. Much of the research on XML focuses on
storage strategies and query performance. Although data
storage and retrieval techniques are important, so is security
and in comparison this is a neglected area. XML databases are
multi-user systems, meaning they can be accessed by millions
of users and can provide a huge amount of data. Much of this
data is sensitive and personal. Confidential data need to be
protected and saved in a secure environment. Security research
for XML databases is crucial in protecting data from
unauthorized processes and misuse.

Most traditional access control models protect data from
malicious activities of outside users but cannot protect the data
from insiders [1]. Research has suggested that damage caused
by insiders is more harmful than that of outsiders [2]. The
insider threat is a huge topic in data security and many
methods have been proposed to identify misuse behaviour, yet
there has been no work on dynamic updates to access
privileges in relation to trust for XML databases. Trust-based
access control has become an established technique in many
areas, such as networks and virtual organisations. It depends
on a trust management system, which automatically calculates
and updates the trust values of users. Trust values rely on

Asmawi A. is with Universiti Putra Malaysia, Malaysia (phone: 012-
2931997; e-mail: a_aziah@upm.edu.my).

Affendey L. S. (Assoc. Dr.) and Mahmod R. (Prof. Dr.) are with the
Department of Computer Science, Universiti Putra Malaysia, Malaysia (e-
mail: lilly@upm.edu.my, ramlan@upm.edu.my, respectively).

Udzir N. I. (Assoc. Dr.) is a Head of Department Computer Science,
Universiti Putra Malaysia, Malaysia (e-mail: izura@upm.edu.my).

users’ behaviours, users’ histories, users’ credit and users’
operations. Users can access resources through trust values
and levels [3]-[7].

Trust based access control for XML databases tracks user
operations and behaviour over time. Therefore, there is a clear
need for logging in XML databases to record users’ bad
transaction, errors and query severities. In this paper, we
proposed the implementation of Xlog file in order to improve
XML database security.

II. SYSTEM ARCHITECTURE
In this section, a practical trust-based access control module

for XML databases is described. This system is dynamic and
responsive to users’ history of errors, bad transactions and also
queries severity.

The module consists of two main parts: the Trust Module
and the Access Control Module. The Trust Module is
responsible for recording errors, bad transactions and query
severity, evaluating them, and calculating the new trust value.
The Access Control Module is responsible for the access
permission policy and access decisions. System architecture
for XTrust is depicted in Fig. 1.

Based on the Fig. 1, there are two main modules in XTrust.
The first module is Trust Module and second module is
Access Control Module. The Trust Module is the main part of
the Trust-based access control system for XML databases. It
receives XML queries from users through the user interface,
evaluates their queries and calculates their trust values. The
evaluation process depends on the users existing trust values,
new bad transactions, new errors and queries severity. After
calculating the new Trust Value for the user, it will send the
Trust Value to the Access Control Module to update the user’s
privileges. This module consists of many parts: the Operation
Evaluator, the Error Detector, the Severity Indicator, the
Operation Recorder, and the Trust Calculator. Each part has its
functions and works in the light of the related policy rules. All
these parts are connected together to achieve the main goal of
calculating trust values for users. This paper will discussed
more details on XLog File which records all users’
transaction.

III. XLOG FILE
Taking into account the need for logging in the XML

databases, we introduce the Xlog file for XML databases
which unlike conventional log files is focused on security
rather than recovery. Thus the Xlog file will support a secure
environment for access control of XML databases, track user
operations and behavior by recording and organizing their

Asmawi A., Affendey L. S., Udzir N. I., Mahmod R.

Enhance Security in XML Databases: XLog File for
Severity-Aware Trust-Based Access Control

X

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

986

actions and also produce a log file that can be used to calculate
a trust value that directly affects user access privileges in a

trust based access control model for XML databases.

Fig. 1 XTrust Architecture

The structure of the Xlog file for XML databases is shown

in Fig. 2. It is dynamic and temporary as it is retained only for
a certain time period depending on the organization’s policy
such as a session, a day, or a week. The Xlog file is written in
XML and is processed as a normal XML file. Its structure
differs from a normal log file, since it depends on the user
identifier instead of time. Using this structure makes capturing
user behaviour fast and easy. It does not need to record time
for each transaction because it is retained for defined period.

The Xlog file records specific kinds of transactions, errors
and severities. Bad transactions are identified by rules defined
in the operation policy file that is shown in Fig. 3. These rules
cover accessing unauthorized nodes or deleting root and
parent nodes. Each bad transaction is categorized by its
identifier and type. At present, only five basic types of
transactions are defined but the rules can be easily extended to
consider other transaction types depending on the system
needs.

Fig. 2 XLog file for XML database

Fig. 3 Operation policy file

Likewise, errors rules are defined in the error policy file

shown in Fig. 4. They focus on accessing nonexistent nodes.

<Bad Transactions>
<Transaction >

<ID> 1 </ID>
<Type> Read unauthorized node </Type >

</Transaction>
<Transaction >

<ID> 2 </ID>
<Type> Write unauthorized node </Type >

</Transaction>
<Transaction >

<ID> 3 </ID>
<Type> Delete unauthorized node </Type >

</Transaction>
<Transaction >

<ID> 4 </ID>
<Type> Delete root node </Type >

</Transaction>
<Transaction >

<ID> 5 </ID>
<Type> Delete parent node with existing

Children
</Type >

</Transaction>
</Bad Transactions>

<Users>
<User>
<ID> 30 </ID>
<Bad Transaction>1</Bad Transaction>
<Bad Transaction>5</Bad Transaction>
<Error>1</Error>
<Error>2</Error>
<Severity>2</Severity>
</User>
</Users>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:6, 2014

987

Fig. 4 Error policy file

All errors are classified by their identifier and type. These

rules do not depend on the existence of a schema, a fixed
structure for the XML document. They could easily be
extended to cover other problems that affect the XML file
structure when there is a schema. Severities are identified by
rules defined in severity policy file depicted in Fig. 5. There
are five kind of severities stated in the policy file.

Fig. 5 Severity policy file

The Xlog file is a useful tool to calculate trust value for the

users by assigning weights for bad transactions and errors.
These weights are subsequently used to adjust the user’s trust
values.

IV. RELATED WORKS
The main purpose of logging in normal databases is to

record transaction information that is used for recovery when
the system crashes and sometimes for concurrency control [8,
9]; it also can be useful for security purposes to track
malicious transactions in databases [10]. The main
classifications in logging are: undo logging, redo logging, and
undo/redo logging, all of which are used mainly to restore data

[8], [9]. Logs can be represented as tables in databases or files.
Log files can be written in different syntaxes, formats, and
languages. Reference [11] suggests that using XML language
to create the log file saves both time and space compared with
tables.

V. CONCLUSION
In this paper, we have presented the XLog file as adynamic

and temporary log file for XML databases in order to enhance
the XML database security level. This approach focuses on
using logging for security issues related to access control. The
XML log file is a part of trust based access control for XML
databases. It is used to evaluate user behavior by recording
user transactions, errors and query severities. The rules for bad
transactions, errors and severities are defined and can be
extended according to need.

REFERENCES
[1] M. Chagarlamudi, B. Panda and Y. Hu, “Insider Threat in Database

Systems: Preventing Malicious Users' Activities in Databases,” in 2009
Sixth International Conference on InformationTechnology: New
Generations, ITNG '09, 2009, pp. 1616-1620.

[2] J. S. Park and J. Giordano, “Role-based profile analysis for scalable and
accurate insider-anomaly detection,” in 25th IEEE International
Performance, Computing, and Communications Conference, IPCCC
2006, 2006, pp. 463-470.

[3] A. Lin, E. Vullings and J. Dalziel, “A Trust-based Access Control
Model for Virtual Organizations,” in Fifth International Conference on
Grid and Cooperative Computing Workshops, GCCW '06, 2006, pp.
557-564.

[4] F. Almenarez, A. Marin, D. Diaz and J. Sanchez, “Developing a model
for trust management in pervasive devices,” in Pervasive Computing
and Communications Workshops, 2006. PerCom Workshops 2006.
Fourth Annual IEEE International Conference on, 2006, pp. 267-271.

[5] X. Ma, Z. Feng, C. Xu and J. Wang, “A Trust-Based Access Control
with Feedback,” in International Symposiums in Information Processing
(ISIP), 2008, pp. 510-514.

[6] X. Han-fa, C. Bing-liang and X. Li-lin, “A mixed access control method
based on trust and role,” in 2010 Second IITA International Conference
on Geoscience and Remote Sensing (IITA-GRS), 2010, pp. 552-555.

[7] S. Singh, “Trust Based Authorization Framework for Grid Services,”
Journal of Emerging Trends in Computing and Information Sciences,
vol. 2, pp. 136-144, 2011.

[8] H. Molina, J. Ullman and J. Widom, Database Systems The Complete
Book, 2nd ed, USA: Pearson International Edition, 2009.

[9] R. Elmasri and S. Navathe, Fundamentals of Database Systems, 5th ed,
USA: Pearson International Edition, 2007.

[10] F. Etho, K. Takahashi, Y. Hori and K. Sakurai, “Study of Log File
Dispersion Management Method”, 10th IEEE/IPSJ International
Symposium on Applications and the Internet (SAINT), IEEE Computer
Society, Seoul, Korea,2010. pp. 371-374.

[11] F. Wang, X. Zhou and C. Zaniolo, “Using XML to Build Efficient
Transaction-Time Temporal Database Systems onRelational Databases”,
The 22nd International Conference on Data Engineering (ICDE), IEEE
Computer Society, Atlanta, Georgia, 2006, pp.131-134.

<XPath Injection Severity>
<Severity>

 <ID>1</ID>
 <Type>No injection query</Type>

</Severity>
 <Severity>
 <ID>2</ID>
 <Type>View injection query</Type>
 </Severity>

<Severity >
 <ID>3</ID>
 <Type>Insert injection query</Type>
 </Severity>
 <Severity>
 <ID>4</ID>
 <Type>Update injection query</Type>
 </Severity >
 <Severity >
 <ID>5</ID>
 <Type>Delete injection query</Type>
 </Severity >
</XPath Injection Severity>

<Errors>
<Error >

<ID> 1 </ID>
<Type> Read nonexistent node</Type >

</Error>
<Error >

<ID> 2 </ID>
<Type> Write nonexistent node </Type >

</Error>
<Error >
<ID> 3 </ID>
<Type> Delete nonexistent node</Type >

</Error>
</Errors >

