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 
Abstract—This paper employs a heuristic algorithm to solve 

engineering problems including truss structure optimization and 
optimal chiller loading (OCL) problems. Two different type 
algorithms, real-valued differential evolution (DE) and modified 
binary differential evolution (MBDE), are successfully integrated and 
then can obtain better performance in solving engineering problems. In 
order to demonstrate the performance of the proposed algorithm, this 
study adopts each one testing case of truss structure optimization and 
OCL problems to compare the results of other heuristic optimization 
methods. The result indicates that the proposed algorithm can obtain 
similar or better solution in comparing with previous studies. 
 

Keywords—Differential evolution, truss structure optimization, 
optimal chiller loading, modified binary differential evolution.  

I. INTRODUCTION 

PTIMIZATION approaches have been widely used in 
various engineering problems in recent years. Most of 

developed optimization methods are designed for dealing with 
continuous optimization problems. One of famous heuristic 
approaches, DE, proposed by Storn and Price [1] is used to deal 
with optimization problems in continuous space. It has been 
recognized as a powerful heuristic optimization approaches and 
has been applied in many fields pertaining to engineering 
problems [2]-[4]. However, DE is not easy to solve the binary- 
valued optimization problem due to the fact that searching 
exploration in binary-valued optimization problems is weak. 
Thus, new binary strategies for DE algorithms have been 
proposed to evolve solutions for binary-valued optimization 
problems. Due to the limitation of binary coding, the binary DE 
have good exploration ability but lack of exploitation in 
searching binary optimal solution due to the limitation of binary 
coding. 

Truss optimization problem has been a standard optimization 
problem in the fields of structure optimization problems. The 
truss optimization problem is attractive due to its direct 
applicability in the design of structures. Many heuristic 
optimization algorithms have been developed to search the 
global optimum for truss structures optimization problems. 
Many heuristic algorithms are widely applied to solve the many 
different types of engineering applications [5]-[9]. 

OCL is a key issue for energy saving. In air condition 
systems of commercial buildings where multiple chillers are 
operated in parallel (multichiller systems), each chiller can 
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operate independently; thus, chiller operation schedule adjusted 
by time schedule to obtain the requirement of refrigeration ton 
(RT) and a flexible maintenance schedule [10] can be easily 
arranged in the commercial building. 

The key issue of saving energy in multichiller system is how 
to operate appropriate numbers of operating chillers and control 
points so that each chiller operates at optimal efficiency. 
Multichiller systems are composed of chillers of varying 
features or even of various types of chillers; the optimized 
control setting is not easy to find out by using traditional 
optimization approaches. Many researches have discussed the 
OCL problem [11]-[16]. 

This study proposed a two-stage DE algorithm; the 
integrated framework includes DE with binary-valued and real- 
valued types of variables, to solve minimum weight of truss 
structure and OCL problems. MBDE [17], [18] is involved to 
increase searching diversity in the first stage; the real-valued 
DE algorithm is used in the second stage for exploitation. The 
proposed two-stage algorithm, by the integration the 
advantages of MBDE and DE, can have good exploration and 
exploitation in solving optimization problems. The comparison 
results indicates that proposed method can obtain better 
solutions than those found in literatures [5], [6], [15], [16] and it 
is proven that two-stage DE is suitable for solving various 
engineering optimization problems.  

II. TRUSS STRUCTURE OPTIMIZATION AND OCL PROBLEMS 

A. Truss Structure Optimization 

Truss optimization can be simply classified into three 
categories: size, shape, and topology. Size optimization of truss 
structures is to optimize the cross-sectional area of truss 
members while the coordinates of the nodes and existence of 
truss members are held constant. In shape optimization, the 
coordinates of the nodes become design variables, and others 
(cross-sectional area and existence of truss members) remain 
constant. The connectivity and existence of truss member have 
become the design variables in the topology optimization of 
truss structure. Because the optimization of size and shape 
simultaneously are nonlinear programming problems [5], 
consideration of all the three types of variables makes the 
problems very complex due to the different characteristics of 
the design variables, including both discrete and continuous 
variables. The formulation of the truss optimization problem 
can be described as follows: 

 
Minimize:  WሺAሻ ൌ ∑ 𝜌௜𝐿௜𝐴௜𝑖௡

௜        (1) 
 

The boundary constraints are subject from G1 to G6 listed 
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below:  
 G1: Truss structure is acceptable to the user. 
 G2: Truss is kinetically stable. 
 G3: i ≦allow , i=1,2……m 
 G4: j ≦ allow , j=1,2……n 
 G5: Ai

min ≦ Ai ≦ Ai
max , i=1,2……m 

 G6: ξj
min ≦ ξj ≦ ξj

max , j=1,2……n  
 Constraint G1: The number of basic nodes for supports and 

loads must exist. The definition of basic nodes is that these 
nodes must have loading or be set as fixed position, and it 
must be existed during the search process. 

 Constraint G2: Grubler's criterion [19] is used to check the 
degree-of-freedom (DOF) of the truss for kinetic stability. 
Once a truss is a non-mechanistic (non-positive DOF 
value), the stiffness matrix is then used to check whether it 
is positive definite. 

 Constraints G3 and G4: All members of the truss must 
have stresses within the allowable strength of the material 
and all nodal displacements must not deflect more than 
allowable limits. 

 Constraints G5 and G6: The design variables of the cross 
section area and positions of non-basic nodes should be 
bonded within the pre-specified value.  

The design variables Ai are the cross-sectional areas of 
structure with m members;j stands for the n real-valued 
coordinates of all non-basic nodes present in the truss. i is the 
material density of truss member; Li is the length of each truss 
member. The parameters allow and allow indicate the allowable 
strength of the member and the allowable deflection of the node 
defined by designer. The existence or void of a truss member in 
the ground structure is determined by comparing the cross- 
sectional area of the member with a pre-defined small critical 
cross-sectional area ε. If the cross-sectional area is small than 
critical area ε, the member is assumed to be removed from the 
truss structures. On the contrary, the truss member will be kept 
in the truss structure with cross-sectional area. The advantage 
of this representation can both represent size and topology of a 
truss member in a real-typed value. The setting of lower and 
upper bounds on the cross-sectional area must be in the range of 
[Ai

min, Ai
max ], and the value of Ai

min is the same as the negative 
value of Ai

max. The reason of introducing negative area is to 
obtain an almost equal probability of any member being present 
or absent in a truss [1]. In this study, the definition of critical 
cross-sectional area ε and negative area are employed in the 
case considering topology optimization of truss structures. The 
penalty function of the constraint violations used in this study 
listed in (6) are applied as in [5]. 

B. OCL Problems 

Multichiller system, composed of two or more chillers, 
provides many advantages in operating control, such as flexible 
operation, reserving capacity, and less frequent system 
shutdowns for maintenance. Each chiller can be operate 
independently in a multichiller system and provide various 
refrigeration capabilities; the chillers can provide a wide range 
of RT requirement according to operate on different or similar 
performance curves in HVAC system. The architecture of a 

multichiller system is as shown in Fig. 1. 
 

 

Fig. 1 Multichiller system architecture 
 

In the design of a multichiller system, maximum peak load 
demand is defined as the maximum capacity of a chiller. 
Maximum peak load generally only occurs in summer because 
actual venue requirements and change of temperature, and the 
multichiller system operates low efficiency by controlled at low 
partial load mode during the remaining time. The partial load 
rate (PLR) of the chiller can be expressed as (2): 

 

𝑃𝐿𝑅 ൌ  ௖௛௜௟௟௘௥ ௟௢௔ௗ

௖௛௜௟௟௘௥ ௥௔௧௘ௗ ௟௢௔ௗ
         (2) 

 
The power consumption of a single chiller, according to 

previous study [16], is defined as (3) by using PLR as a control 
parameters. 

 

𝑃௜ ൌ 𝑎௜ ൅ 𝑏௜ ൈ 𝑃𝐿𝑅௜ ൅ 𝑐௜ ൈ 𝑃𝐿𝑅௜
ଶ             (3) 

 
The objective of OCL was to figure out the optimized partial 

loading rate for each chiller in the multichiller system to obtain 
minimized power consumption and also satisfied the RT 
requirement. The restriction of OCL is shown in (4), and the 
second restriction is that the partial loading of each chiller 
cannot be less than 30% [16]. 

 
∑ 𝑃𝐿𝑅௜

௡
௜ୀଵ ൈ 𝑄௜ ൌ 𝐶𝐿         (4) 

III. TWO-STAGE DE 

A. DE 

DE [1], proposed by Storn and Price, was developed as a 
population-based global optimization algorithm for real-value 
numerical optimization problems. The upper and lower bounds 
for each design variable are used to generate initial population 
randomly. The objective function values for all individuals in 
the population are calculated and the best individual xbest,G of 
each generation is selected for mutation. The three main steps 
of DE, mutation, crossover, and selection are then iterated until 
the convergence state is satisfied. 

The main target of the DE mutation operator is to calculate 
different mutated vectors. For each individual’s vectors Xi,G in 
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the population, DE uses a mutation operation to generate a new 
mutated vector according to (5) and (6): 

 
𝑉௜,ீାଵ ൌ 𝑋௜,ீ ൅ 𝐹 ൈ ሺ𝑉௥ଵ,ீ െ 𝑋௥ଶ,ீሻ       (5) 

 

𝑉௜,ீାଵ ൌ 𝑋௕௘௦௧,ீ ൅ 𝐹 ൈ ൫𝑉௥ଵ,ீ െ 𝑋௥ଶ,ீ൯       (6) 
 
The index G is used as index of the current iteration 

generation. In (5) and (6), r1 and r2 are random numbers 
between 1 and NP. Two random vectors, Xr1,G and Xr2,G, are 
selected from population of current iteration G to generate new 
mutation vector Vi,G+1 shown in (5). The vectors Xbest,G 
represents the best target vector of the current generation. F is 
scaling factor, a real value between zero and one, is introduced 
to increases or decreases the differential variation between the 
two vectors. After all individual entity generate a mutated 
vector by applying the mutation mechanism, the crossover 
operator is used to generate trial vectors in the next stage. 

In the crossover operator, the trial vector Ui,G+1 is generated 
by a combination of parts of the mutated vector, Vi,G+1, and the 
target vector Xi,G. The crossover parameter is shown in (7) and 
(8), and Cr represents the crossover probability. If the generated 
random number R is smaller than the Cr value, the variable of 
mutation vector, Vi,G+1 ,will be chosen to be the variable of the 
trial vector. Otherwise, the variable of the target vector Xi,G is 
selected as the variable of the trial vector. The mutation and 
crossover operators are used to diversify the search area of the 
optimization problems. 

 
𝑖𝑓 𝑅 ൑ 𝐶௥ , 𝑈௜,ீାଵ ൌ 𝑉௜,ீାଵ        (7) 

 
𝑖𝑓 𝑅 ൐ 𝐶௥ , 𝑈௜,ீାଵ ൌ 𝑋௜,ீ        (8) 

 
All trial vectors Ui,G+1 have been selected to be candidates 

for selection operations. If the cost value of trial vectors Ui,G+1 

is better than target vector Xi,G , the trial vector is chose as for 
new target vector Xi,G+1. Otherwise, the target vector Xi,G is 
selected. 

B. Binary DE 

A MBDE used in this study proposed by [17], [18] was 
proposed by Wu and Tseng in 2010. MBDE uses bit string to 
represent the individuals in a population. The modified 
mutation mechanism is developed to solve discrete 
optimization problems. The evolutionary procedures of MBDE 
are the same as those of DE. Initial population of MBDE is 
randomly generated by uniform random number generator for 
value 0 or 1. The objective function value of all individuals of 
the population is calculated and a novel binary mutation 
mechanism is used to generate mutated individuals. The binary 
crossover mechanism is then applied to build trial solutions. If 
the objective function value of the trial solution is better than 
original solution, the trial solution will be selected for the next 
generation. Otherwise, the new solution for the next iteration is 
replaced by the original solution.  

The main idea of modified binary mutation mechanism in 
this study is to find the common and difference feature pattern 

of two individuals and then apply a mutation operation to 
mutate bits in the different feature patterns using different 
mutation rates. The modified binary mutation mechanism is 
also based on the bit-string frameworks and logical operations. 
But the mutation is truly applied to two groups of bits which are 
decided by using an XOR logical operation. Bits with code “0” 
in the string after XOR operation represent common bits having 
identical codes of “1” or “0” in both strings. Bits with code “1” 
represent difference bits having different codes in two selected 
strings. The binary mutation equation is illustrated in (9) and 
(10). In (9), XOR operator is used to determine the difference 
bits and the common bits between the Xi,G and Xr1,G solutions. 
Each single bit belongs difference bits of Xi,G are changed from 
0 to 1 or 1 to 0 while random number R is higher than mutation 
rate F1. Similarly, the common bits of Xi,G are mutated by using 
mutation rate F2. In general, the mutation rate F1 is higher than 
the mutation rate F2, because the common bits may have 
chance to become the feature pattern of a final optimum 
solution and the difference bits need higher probability to 
mutated. In the final stage, we combine these binary strings, 
including common and difference patterns, to represent trial 
solution Vi,G+1 mutated individuals. The flowchart of the new 
binary mutation mechanism is shown in Fig. 2. Though it uses 
logical operations with binary strings, the proposed algorithm 
tries to follow only the process of DE to perform optimum 
search without enhancement by other optimization algorithms. 

 

 

Fig. 2 Binary mutation mechanism in MBDE 
 

𝑉௜,ீାଵ ൌ  𝐹1൫𝑋௜,ீ⊕𝑋௥ଵ,ீ൯ ൅ 𝐹2! ൫ 𝑋௜,ீ⊕𝑋௥ଵ,ீ൯      (9) 
 

𝑉௜,ீାଵ ൌ  𝐹1൫𝑋௜,ீ⊕𝑋௕௘௦௧,ீ൯ ൅ 𝐹2! ൫ 𝑋௜,ீ⊕𝑋௕௘௦௧,ீ൯   (10) 

C. Two-Stage DE 

The proposed two-stage DE is to combine two kinds of one- 
stage approaches, MBDE and DE, in solving truss optimization 
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and OCL problems. In stage 1, the solving of MBDE begins 
after the cross-sectional area of each truss member and PLR 
parameter of each chiller has been encoded to binary, 
restrictions have been considered, and the objective equation 
has been defined. The first stage can explore the possible 
solutions with coarse resolution. The candidates around the 
optimum solution obtained in the first stage are subject to real- 
coded DE in the second stage for rapidly converging to the 
optimal solution in continuous space. 

IV. RESULT STUDY AND DISCUSSION 

A. Truss Structure Optimization 

The objective of this case is to minimize the weight through 
optimizing cross-section areas and topology of each truss 
member. The geometry model and loading conditions of a 15 
member truss with six nodes are shown in Fig. 3. The material 
properties and design constraints are: 
 Modulus of elasticity E = 1104ksi 
 Density  = 0.1lb/in3 
 Maximum allowable stress allow = 25 ksi 
 Allowable displacement allow = 2.0 in. 

 

 

Fig. 3 15 member, 6 node truss structure 
 
The area of the cross section following the setting of 

literature used [5] is limited between -35 in2 and 35 in2. The 
critical area of the truss member is set to 0.09 in2. Case two will 
be analyzed using two-stage DE, to compare the performance 
of those two methods. The optimized truss with five truss 
members removed is illustrated in Fig. 4, and the cross- 
sectional area and weight employing two-stage DE, GA [5] and 
ant algorithm [6] are listed in Table I, respectively. The weight 
using two-stage DE is 4730.48 lbs, lighter than the weight 
found by GA of 4731.65, and the ant algorithm, 4730.824. The 
maximum stress and displacement using two-stage DE are all 
below the allowable constraints also shown in Table I. The 
convergence history of two-stage DE for this case is shown in 
Fig. 5, and the best solution employing two-stage DE has an 
overall weight of 4787.49 lbs at 168 iterations. The number of 
objective function evaluations of two-stage DE is 16,500 (2610 
for stage one, 13,890 for stage two), much less than that found 
in the literature (GA = 80,850, ant algorithm = 41,000). It 
shows that two-stage DE obtains lower weight with fewer 
objective function evaluations than either GA or the ant 
algorithm. 

 

 

Fig. 4 Optimized truss structure found by two-stage DE 
 

 

Fig. 5 The convergence history of two-stage DE for case one (15 
members with 6 node truss structure) 

 
TABLE I 

 MEMBER AREAS OF THE OPTIMIZED TRUSS 

Truss Number 
Area(in2) 

Two-stage 
DE 

Deb and 
Gulati [5] 

Luh and 
Lin [6] 

1 5.386 5.219 5.428 

2 20.433 20.310 14.308 

3 14.310 14.593 20.265 

4 7.646 7.772 7.617 

5 28.881 28.187 20.549 

6 20.366 20.650 28.876 

Weight 4730.48 4731.65 4730.824 

Max. Calculation 15,900 85,050 41,000 

Max. Displacement (in) 1.999 2.000 1.999 

Max. Stress (Ksi) 18.564 18.567 19.161 

B. OCL 

The objective of OCL in this study was to calculate the 
lowest power consumption combinations of all six chiller under 
and satisfied different RT requirements. The venue RT 
requirements were of five types: 6858 (90%), 6477 (85%), 
6096 (80%), 5717 (75%), and 5334 (70%). The power 
consumption is defined in (3). The rated RT of each chiller and 
the power consumption parameters (ai, bi, ci) are listed in Table 
II. In order to compare the result obtained in previous literature 
[15], [16], mean standard deviation (SD), maximum, minimum 
and average values were computed in this case through 30 runs. 
The population was 20 and the iteration number of each run is 
20,000. In parameter setting of MBDE, the crossover rate was 
0.5; the mutation rates F1 and F2 were 0.5 and 0.005, 
respectively. The mutation rate and crossover rate of DE were 
each 0.5. In order to obtain the same numbers of calculation 
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with other study [15], [16], the total number of iterations was 
given 1,000. 

 
TABLE II 

POWER CONSUMPTION COEFFICIENT AND RATED RT INFORMATION 

Chiller ai bi ci Rated RT 

1 399.345 -122.12 206.30 1280 

2 287.116 80.04 700.48 1280 

3 -120.505 1525.99 -502.14 1280 

4 -19.121 898.76 -98.15 1280 

5 -95.029 1202.39 -352.16 1280 

6 191.75 224.86 524.04 1280 

 
Table III summarizes the optimization results of the 

proposed method with DCSA [16]. The optimized results 
solved by two-stage DE were very close than those of DCSA in 
minimum values. In comparison with SD values, the proposed 
method has proven its stability than can obtain better result than 
those of DCSA in all CL conditions.  

TABLE III 
RESULT COMPARISON WITH DCSA 

CL Algorithm 
MIN 
(kW) 

Average 
(kW) 

Max 
(kW) 

SD 

6868(90%)
Two-stage 

DE 
4738.575 4733.575 4738.575 3.919E-06

 DCSA 4738.575 4738.575 4738.575 5.313E-7 

6477(85%)
Two-stage 

DE 
4421.649 4421.649 4421.650 6.355E-05

 DCSA 4421.649 4421.650 4421.650 2.301E-4 

6096(80%)
Two-stage 

DE 
4143.706 4143.709 4143.714 3.211E-04

 DCSA 4143.706 4143.710 4143.709 4.299E-4 

5717(75%)
Two-stage 

DE 
3838.208 3838.217 3838.225 6.702E-04

 DCSA 3840.055 3840.458 3843.766 9.428E-1 

5334(70%)
Two-stage 

DE 
3507.270 3507.278 3507.302 1.356E-03

 DCSA 3507.270 3507.715 3511.760 1.036 

 

 
TABLE IV 

RESULT COMPARISON WITH METHODS PROPOSED BY OTHER STUDIES 

CL Chiller No. PSO [15] Power (kW) DCSA [16] Power (kW) This Study Power (kW) 

6898 
(90%) 

1 0.8026 

4739.53 

0.8127 

4738.575 

0.8127 

4738.575 

2 0.7799 0.7496 0.7495 

3 0.9996 1.0000 1.0000 

4 0.9998 1.0000 1.0000 

5 0.9999 1.0000 1.0000 

6 0.8183 0.8385 0.8386 

6477 
(85%) 

1 0.7606 

4423.04 

0.727731 

4421.649 

0.7204 

4421.648 

2 0.6555 0.656132 0.6342 

3 1.0000 1.000000 1.0000 

4 1.0000 1.000000 1.0000 

5 1.0000 1.000000 1.0000 

6 0.6835 0.716524 0.7463 

6096 
(80%) 

1 0.6591 

4147.69 

0.642735 

4143.706 

0.6423 

4143.706 

2 0.5798 0.562645 0.5627 

3 0.9991 1.000000 0.9999 

4 0.9979 1.000000 0.9999 

5 0.9921 1.000000 0.9999 

6 0.5710 0.594490 0.5947 

5717 
(75%) 

1 0.7713 

3921.07 

0.843697 

3840.055 

0.8432 

3838.207 

2 0.7177 0.783794 0.7832 

3 0.3000 0.000001 0.0000 

4 0.9991 1.000000 0.9999 

5 1.0000 1.000000 0.9999 

6 0.7187 0.883049 0.8824 

5334 
(70%) 

1 0.6265 

3675.34 

0.6418 

3507.270 

0.7499 

3507.270 

2 0.7403 0.6621 0.6824 

3 0.3093 0.3301 0.0000 

4 0.9546 0.9906 1.0000 

5 0.9511 0.9990 1.0000 

6 0.6250 0.5806 0.7763 

 

The result comparison with PSO [15] and DCSA [16] was 
shown in Table IV. The result found by two-stage DE was 
better than those of PSO in all CL conditions (from 75% to 
90%). When CL was 90%, 80% and 70%, a solution similar to 
that of DCSA was found. Furthermore, the solution obtained by 
two-stage DE was superior to that of DCSA under other CL 

conditions (85% and 75%), the results indicated that those of 
the proposed algorithm were superior to those of other studies 
[15], [16]. 

V. CONCLUSION 

In this paper, a two-stage DE is successfully investigated for 
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truss optimization and OCL problems. The MBDE proposed in 
this study is applied in the first stage to locate a diversity of 
solution candidates with coarse resolution, and then real-valued 
representation with DE in the second stage is used to obtain a 
better solution by exploiting the results obtained in the first 
stage. Truss optimization and OCL problems are used to 
illustrate the high viability of the proposed algorithm in 
comparison with the results found by previous studies [5], [6], 
[15], [16]. The results show that two-stage DE can obtain better 
or similar results than the approaches found in the literature in 
those two types of engineering optimization problems. 
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