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 
Abstract—Renewable energy recovery is an important domain of 

research in past few years in view of protection of our ecosystem. 
Several industrial companies are setting up widespread recovery 
systems to exploit wave energy. Most of them have a large size, are 
implanted near the shores and exploit current flows. However, as 
oceans represent 70% of Earth surface, a huge space is still 
unexploited to produce energy. Present analysis focuses on surface 
small scale wave energy recovery. The principle is exactly the 
opposite of wheel damper for a car on a road. Instead of maintaining 
the car body as non-oscillatory as possible by adapted control, a 
system is designed so that its oscillation amplitude under wave action 
will be maximized with respect to a boat carrying it in view of 
differential potential energy recuperation. From parametric analysis 
of system equations, interesting domains have been selected and 
expected energy output has been evaluated.  

 
Keywords—Small scale wave, potential energy, optimized 

energy recovery, auto-adaptive system. 

I. INTRODUCTION 

Resent project is in the continuity of many widespread 
existing projects. It has long been recognized that because 

oceans are covering 70% of Earth surface, marine energy in 
different forms will play an important role in coming energy 
transition [1]-[3]. Some of them such as wind [4] and tidal [5] 
turbines are subject to various constraints: They have to be 
located where the winds and/or currents are sufficient, which 
greatly reduces the usable surfaces. Also, the needs of 
foundations require shallow depths and induce high 
installation and maintenance costs. Other marine power 
systems, though free from these constraints, encounter 
difficulties related to their large sizes and types of waves they 
need to function [6]-[13], typically a large swell only found in 
some remote areas of the shore with difficult access. As all 
these projects aim at an important energy efficiency and 
delivery, they only focus on large waves. Other approach has 
the objective to discuss the possibility of designing a system 
capturing wave energy based on smaller amplitude waves 
existing all over ocean surface, and which can be useful as 
local energy sources [14]. Even if it looks random on small 
space and short time scales, swell Fourier analysis gives a 
stationary energy spectrum for period of an hour commonly 
represented by semi-empirical function [15], [16]. When 
expressed in kW/m evaluation of transported power gives 
typical 2,5 kW/m for small swell, about ten times larger value 
for regular oceanic swell and up to hundred times larger in 
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case of big hurricane. For a shore of 103 km long in front of 
Atlantic Ocean, France could expect to collect 420 TWh/year, 
to be compared to 450 TWh/year final electric power 
consumption. Aside these energy sources based on wave 
displacement with respect to a fixed point on ocean surface, 
there also exists the possibility to exploit without specific 
fixed location reference the continuous up and down motion of 
ocean surface. This will be useful energy sources for non-
fixed floating objects anywhere on ocean surface [17]. It is 
interesting in this case to determine to what extent smaller 
amplitude waves can as well be used even if their output is a 
modest amount of energy. Roughly for a wave of wavelength 
1 m and height H meters, the possible delivered energy is 
E = MgH for an object of mass M newtons, and with a surface 
of 3.108 km2 one would potentially get over the globe ETot  
3.1016 Mh gigajoules which is extremely large. So, the 
recoverable energy amount with low amplitude waves is not 
negligible. It is just dispersed: To be relatively manageable 
from local point of view (for instance a sailing boat on ocean 
surface), the exploitation system should be of modest size as 
presented in next paragraph. But it should also be optimized 
for improving enough collected energy as discussed in the 
following. 

II. SMALL SCALE WAVE MODEL 

It is interesting to note that energy recuperation system is 
the opposite of car suspension system, see Fig. 1. On a road 
with bumps, the shocks must be controlled and reduced for the 
body car to stay as much as possible steady. Here, as it is 
expected to recover as much energy as possible from the 
wave, one should take advantage of its movement. Modeling 
is based on the opposite of vehicle body ups and downs on an 
undulating road reduced through a damped suspension. 

 

 

Fig. 1 Car Dumper 
 

Energy Recovery from Swell with a Height Inferior 
to 1.5 m 
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The wheels vertical oscillations, due to the uneven ground 
and to car forward speed, can be expressed as an imposed time 
dependent displacement producing a forced oscillation of 
suspension mechanism and analysis can be developed out to 
find best absorption strategy depending on passive, semi-
active or active nature of damping system fixed by energy 
consumption constraints [18], [19]. 

Here the two masses M1 (the boat) and M2 (the float) are 
carried by a wave through a vertical axis suspension. The 
latter is modeled by a spring of stiffness K1 for the boat and K2 
for the floater, with damping F1 for the boat and F2 for the 
floater, see Fig. 2. Interaction between the boat and the float 
will be simply described by a spring of stiffness K. 

 

 
Fig. 2 Sketch of the Two Mass System ("B": The Boat, "F": The 

Floater) 
 

With positions of the boat X1 and the floater X2, system 
equation is given in normalized form by  
 

d2X/dt2 + f dX/dt + <>2X = 2t 
 
where X = [X1,X2]T is system state, f = diag[f1,f2] the damping 
matrix, 2 = diag[1

2,2
2] the stiffness matrix, <>2 = 2 + 

2M, M = matrix[m m], m = [1 ]T, t) the time dependent 
wave oscillation source. Normalized parameters are defined 
by fj = Fj/Mj, j

2 = Kj/Mj,  = M2/M1 and 2 = K/M2. Because 
the coefficients in left hand side of (1) are constant, its 
solution after Laplace transform is given by  
 

X(s) = [s2I + sf + <>2]12(s)                    (2) 
 

where (s) is the Laplace transform of t. This source term 
depends on the physical origin of the waves in the ocean, for 
instance travelling stationary ones bouncing from one side of 
the oceanic basin to the other one, or local Airy type one in 
specific location. In any case its determination is depending on 
the solution of a well-defined problem which will not be 
discussed.   

It is now interesting to determine the value of system 
adjustable parameters so that the amplitude of the difference D 

= X1 X2 is largest in typical frequency band corresponding 
to waves generation, as this corresponds to highest possible 
energy recuperation. After simplifications, the final result is:  
 

D(s,) = 2{(S1
2 + 2)(S2

2 + 2) + 2[S1
2 + S1

2 + 

2( + )]}1{S1
2  S2

2}(s)                 (3) 
 

with Sj
2 = s(s + fj), 1

2 = 2
2 ( < 1), and renaming 2 = 2

2.  

III. SYSTEM ANALYSIS AND OPTIMIZATION 

Equation (3) gives the Laplace transform of the response 
difference between the boat and the floater to a wave of 
amplitude (s) and characteristic s. Aside  and fk, its 
expression contains two important passive system parameters 
 and describing system properties at present level of 
representation. In view of energy recuperation, optimization of 
D rests upon determination of their best values as system 
potential energy is given by Epot = M2gD. To simplify the 
analysis, it will be supposed that friction origin is the same for 
the two masses in which case specific frictions fj (j=1,2) are 
equal fj = f, so Sj = S and (3) becomes in normalized form  

 

D(,) = (1  2(4 + L2 + M]1(s)            (4) 
 

by defining  ) with  = s/ = f/and  = 
L = 1 +  + (1 + )2, M =  + ( + )2. The 
denominator can also be written  = (2 + +

2) (2 + 2) with 
±

2 = .5(L ± (L2  4M)1/2) > 0 because L2  4M = [(1  + 
1   > 0. When +

2  1 + 2 and 2  
Now the transforming factor 2/ of D can be split into two 
partsD1 = 2(2 + +

2)1 and D2 = [2 + 2]1 the absolute 
value of which is to be maximized by choosing adequate 
values of  and D2 takes the form  
 

D2 = {[2 2]2 + 22}1/2                  (5) 
 
with maximum value    
 

D2max = 1{2  2/4}1/2                    (6)                   
 

for m
2 = 2 2/2. On the other hand, the maximum D1max 

of D12 = 2(2 + 2)[(+
2 2)2 + 22]1 is occurring for   

 

1,m
2 = +

2/2 + [+
2/4 + 2/2]1/2                 (7) 

 
See Fig. 3. Owing to system structure, it is not possible to 
choose parameters  so that equality m = m = 2,m 
holds, which would maximize D for wave specific value m. 
So, this optimization scheme cannot be applied to a single 
frequency wave w oscillating without damping at ocean 
surface like Airy-von Gerstner swell [20]. Instead, because the 
two peaks of D1 and D2 are split apart with typically m  
(1 + 2)1/2 and 2,m   for reasonable  << 1, and D1(+/2) 
= 1, see Fig. 3, one could try to have 2,m  was D2() is 
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very sharp. However the product D1D2(2,m) < 1 for 
reasonable value of , and better strategy has to be found.  
 



Fig. 3 Sketch of Filter Functions Dk() with  = (22)1/2 
 

 

Fig. 4 Sketch of Localization of Wave Spectrum () and Simplified 
Filter Function Dapp 

 

Product D1D2() exhibits a maximum at Max > 2,m, and 
is typically larger than 1 in the interval [,] where  is such 
that D2()  1. In realistic situation the wave oscillation 
tis a combination of different waves belonging to an 
interval  = [] with Fourier transform function (), and 
it is interesting for maximizing D to choose floater and 
system parameters so that D1D2() = F(()), where F(.) is 
a regular function. This implies that intervals and [,] 
should have non zero intersection. Best situation occurs when 
the maximum abscissa M of () is exactly placed at Max, 
see Fig. 4. When this is possible, second order expansion of 
D1D2() around its maximum, and inverse Fourier transform 
gives approximate displacement difference 

 

D(t)  Dapp(t) = (1  DMaxt + 2Max
2 

 (d2D)Max’’tcosMaxt 
 
with (d2D)Max = d2D/dX2(Max) and X = Max

2, out of which 
lower bounds of potential energy Epot = M2gD(t) and kinetic 
energy Ekin = .5M2[D’(t)]2 can be directly calculated. Dapp(t) 

contains a constant multiplicative term and an inertia term (the 
second derivative term) resulting from acceleration 
(deceleration) phases in oscillatory motion which increases 
(decreases) the apparent weight of mass M2 and modifies 
potential energy Epot. To ride the system with largest potential 
energy value one should keep the equality Max = M such that 
d(M)/d = 0, which implies that floater system parameters 
have to be adaptively driven from measured actual swell 
conditions [21]. Present analysis is valid for single humped 
wave spectrum. When this not the case, numerical gradient 
calculations have to be developed directly on D(t) from (4).    

IV. APPLICATION 

The specific case where weighting function () = 
A5exp(4) with two constants A and B depending on 
considered wind wave model [22] will be used here. This is a 
narrow very peaked distribution allowing calculate all 
moments n = n()d analytically as n = .25AB(n/4  

1)(1 n, out of which in particular wave height H = 40 
and mean wave period T1 = 0/1 can be found. Its maximum 
occurs for M = (4B/5)1/4. Numerical calculations have been 
developed to maximize function D(t,) with respect to 
system parameters  which have been chosen to satisfy 
Max = M. Parameters A and B are directly related to wave 
height H and period T1 by 
 

A = BH; B = .25[(1/4)]4 (T1)4                     
 
and can be adjusted to actual swell condition from 
measurement of T1 and H. To optimize energy recovery, it is 
interesting to have variable system floater coefficients K and 
M2 so that they satisfy condition (10) thanks to direct control 
chain (T1,H)  (A,B)  (K, M2). With normalized system 
parameters given in Table I. 

 
TABLE I 

PARAMETERS’ VALUE 

2   
.05 .05 2101 3.10 3 

 
It is seen on Fig. 5 that the interval for which D1D2(X) > 1 

is X {[.5] [2,3.6]}, and second interval [2.3,6] is more 
adapted to fit wave spectrum. Condition X2,Max = Xw fixes the 
value of scaling factor  out of which all other 
system parameters can be determined by the relations K2 = 
W

2M2/X, K1 = W
2M2/X and K = 2K2, M1 = M2/ once M2 

(ie the desired potential energy per wave height unit) has been 
fixed. In present case, it is verified from (4) that highest value 
of amplification factor is equal to (1  )D1D2(X2max)  .98 
i.e. is less than 1. This fully justifies optimality research 
proposed in the text.  
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Fig. 5 Curves D1D2(X) and (X) (X = 2) 

V. CONCLUSION 

The recuperation of wave energy at the surface of the 
oceans with a system of a floater and a boat submitted to 
ocean surface oscillations has been modeled as an opposite 
problem to car body stabilization on a bumpy road. Analytical 
study of system equations allows derive a lower bound of 
position difference between floater and boat. Its expression 
can be optimized by a convenient choice of floater parameters 
which may be adapted to actual wave situation.  
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