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Abstract—Energy dissipation in drops has been investigated by 

physical models. After determination of effective parameters on the 
phenomenon, three drops with different heights have been 
constructed from Plexiglas. They have been installed in two existing 
flumes in the hydraulic laboratory. Several runs of physical models 
have been undertaken to measured required parameters for 
determination of the energy dissipation. Results showed that the 
energy dissipation in drops depend on the drop height and discharge. 
Predicted relative energy dissipations varied from 10.0%  to 94.3%. 
This work has also indicated that the energy loss at drop is mainly 
due to the mixing of the jet with the pool behind the jet that causes 
air bubble entrainment in the flow. Statistical model has been 
developed to predict the energy dissipation in vertical drops denotes 
nonlinear correlation between effective parameters. Further an 
artificial neural networks (ANNs) approach was used in this paper to 
develop an explicit procedure for calculating energy loss at drops 
using NeuroSolutions. Trained network was able to predict the 
response with R2 and RMSE 0.977 and 0.0085 respectively. The 
performance of ANN was found effective when compared to 
regression equations in predicting the energy loss. 

Keywords—Air bubble, drop, energy loss, hydraulic jump, 
NeuroSolutions 

 
I.  INTRODUCTION 

 vertical drop or free over fall is a common feature in 
both natural and artificial channels.  Natural drops are 

formed by river's bed erosion while artificial drops are built in 
irrigation systems to reduce the channel slope to designed 
slope [1]. Due to more energy dissipation drops are also 
applied in stepped spillways. The more energy dissipation is 
caused by mixing of the jet with the pool at downstream of 
each drop. As a result, it will be the cause of the reduction in 
the size of the energy dissipater that is generally provided at 
the toe of drops and stepped spillways [2]. A vertical drop 
located in a rectangular channel is illustrated in Fig. 1, where 
h is the height of drop, q is the discharge per unit width of the 
channel, yc is the critical depth, Lp is distance between hitting 
jet location on stilling basin and vertical drop wall and yp is 
average pool depth behind the falling jet. The upstream flow 
is subcritical and the flow immediately downstream of the 
drop is supercritical. 

 
Fig. 1 Characteristics of flow over a vertical drop 
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Moore [3] performed an experimental study with drops of 
two heights and found that the energy loss at the drop could 
be significant depending upon the relative height of the drop 
h/yc. As h/yc increases from 1 to 12, the relative energy loss 
varies from zero to 0.53.  Moore [3] also found that the 
Equation 1 is good predictor for the depth of the pool behind 
the falling jet, yp: 
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In a discussion of Moore’s paper [3], White [4] developed a 
method to predict the energy loss at the drop based on a 
number of assumptions. Using the momentum equation, White 
[4] obtained  equation 2: 
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Energy at downstream of drop and before hydraulic jump can 
be written as equation 3: 
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By substitution of equation (2) in equation (3), White [4] 
showed that: 
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since the energy upstream of the drop (Ht) can be written as 
equation 5: 

ct yhH 5.1+=           (5) 

then it can be shown that energy 
dissipation )( 1HHH t −=Δ is a function of h/yc.  Gill [5] 
attempted to modify the theory of White [4] by refining his 
assumptions. Then Gill [5] obtained equation 6 for the depth 
below the drop y1.  
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Where φ  is the angle of the jet where it hits the pool.  Gill 
[5] also performed experiments on four drops with heights of 
48.3, 74.0, 99.4 and 176.5 mm and measured primarily the 
pool depths and the angle of the impinging jet.  He found that 
his method predicted values of H1/yc somewhat larger than 
those predicted by White [4].Rand [6] performed an 
experimental study on drops and developed a set of empirical 
equations for the drop characteristics in terms of the Drop 
Number ( 332 )/(/ hyghqD c== ).Chamani and 
Rajaratnam [7] performed an experimental study on two drops 
of heights 0.62 and 0.25 m were built in a rectangular channel 
of width of 0.46 m, 6.55 m length and depth of 0.91 m.  For 
the third drop with height 0.25 m, a slot was cut in the back 
wall, so that no pool was formed behind the jet, thereby 
simulating an inclined jet.Chamani and Rajaratnam [7] 
presented a method to predict drop characteristics. Their 
analysis was based on a number of assumptions to simplify 
the problem. The effect of air entrainment on flow 
characteristic was ignored. With reference to Fig. 1, applying 
the momentum equation to the control volume 1, they 
obtained equation 7. 

 

2
11

2 5.05.0cos yqVyqV p γργφρ +=+     (7)  

Where ργ , are respectively the specific weight and mass 
density of the fluid, V is average hitting jet velocity with 
stilling pool and φ  is its angle with horizontal (Fig. 1). It is 
assumed that the shear force at the bed is negligible. For the 
subcritical flow that approaches the drop structure at critical 
depth, the momentum and energy equation for the control 
volume 2 reduce to equations 8 and 9 respectively. 

φρργ cos5.0 2 qVqVy cc =+         (8) 

pc ygVyh +=+ 2/5.1 2         (9) 

In fact the last relation is the continuity equation at 
supercritical condition of flow along the drop structure. As 
can be seen there are only four equations for five unknown 
including 11,,,, yVyV pφ . To complete the equations, 

Chamani and Rajaratnam [7] used equation 10 that is an 
empirical equation. 

719.0)/(107.1/ hyhy cp =
        (10) 

Artificial Neural Networks (ANNs) 

ANNs are parallel information processing system. A neural 
network consists of a set of neurons or nodes arranged in 
layers and in the case that weighted inputs are used, these 
nodes provide suitable inputs by conversion functions [8]. 
Any layer consists of pre-designated neurons and each neural 
network includes one or more of these interconnected layers. 
Fig. 2 represents a three layered structure that consists of one 
input layer, I, one hidden layer, H, and one output layer, O. 
The operation process of these networks is so that the input 
layer accepts the data and the intermediate layer processes 
them and finally the output layer displays the resultant outputs 
of the model application. During the modeling stage, the 
coefficients related to the present errors in the nodes are 
corrected through comparing the model outputs with the 
recorded input data [9].  

 

 
Fig. 2 Neuron Layout of Artificial Neural Networks (ANN) 

 

In recent years, artificial neural network (ANN) models 
have attracted researchers in many disciplines of science and 
engineering, since they are capable of correlating large and 
complex datasets without any prior knowledge of the 
relationships among them. ANNs were applied by Yuhong 
and Wenxin [10] to predict the friction factor of open channel 
flow, by Zahiri and Dehghani [11] to determine flow 
discharge in straight compound channels, by Fadare and  
Ofidhe [12] for prediction of  friction factor in pipe flow, by 
Ozgur [13] to predict mean monthly stream flow, by Nakhaei 
[14] for estimating the saturated hydraulic conductivity of 
granular material and by Landeras et al. [15] for forecasting 
weekly evapotranspiration. 

II. MATERIALS AND METHODS 

Air bubbles entrainment 

Flow at downstream of drops contain air bubbles and it 
apparent like white-water. Existing of air bubbles in the flow 
causes some error in reading of flow depth and as a result, 
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reduction of the flow shear stress. Overall, this phenomenon 
affects the calculation of the flow hydraulic characteristics. To 
eliminate this error, Matos and Quintela [16] try to calculate 
the flow energy dissipation in over falls using conjugate water 
depth of hydraulic jump. They tried to reproduce the results 
obtained in investigation of Diez-Cascon et al. [17]. This 
indirect or nonintrusive method has already been referred by 
Stephenson [18] and Diez-Cascon et al. [17] and applied by 
Tozzi [19] and Pegram et al. [20]. The present study tries to 
cope with this problem to reduce the error of the developing 
models.  

Experimental apparatus and measurements 

The experiments were conducted at the hydraulic laboratory 
at Shahid Chamran University (SCU), Ahwaz, Iran[21]. Three 
drops were built from Plexiglas. Two drops with heights of 
18.5cm and 31.6cm that were installed in a tilting rectangular 
flume of 0.25m width. Third drop with 70cm height was 
installed in a rectangular flume with 0.50m width. The length 
of the first flume is 12 m and its height is 0.48 m. The length 
of the second flume is 8m and its height is 1.5 m. Water is 
pumped into 4.5m constant head tank. Then, water is entered 
to the approach channel with a 10 inches pipe using a butterfly 
valve for adjusting the flow rate. Care was taken to minimize 
turbulence and swirl in the approaching channel. Three drops 
were installed at 4.0m downstream of the entrance section of 
the laboratory flume. At end of the laboratory flume, a vertical 
slide gate was installed for control of the water surface. In 
operation, the position of the slide gate was adjusted by a 
screwed rod to form a hydraulic jump in the basin and to 
locate the jump close to (but not drowning) the toe of the 
drops.  The maximum discharge through the flumes was 60 L 
s-1. The discharge was measured by a triangle weir with 53o 

installed in sidewall of a 1.5m * 2 m box at the downstream of 
flume. A total of 28 discharges were used for the three drops, 
providing a range of 0.02 to 0.94 for yc/h. 
Water levels, drops elevations, and stream-bed elevations 
were measured with a manually operated point gauge 
equipped with a vernier, readable to within 0.1mm accuracy. 
In each run test, water depth was measured at the upstream of 
drop, downstream before and after of hydraulic jump and  
above triangular weir.  y2 was measured where there were few 
bubbles in the tail water, and the precision of measurement of 
y2 was achieved to within a repeatable range of 3mm for all 
flow conditions. All the measurements were made in the 
centre plain.  The average flow velocity has been calculated 
using the measured flow rate and the depth. Tables I until IV 
present some primary experimental data for present study, 
Moore [3], Chamani and Rajaratnam [7] and Rand [6] in 
vertical drop. 

  

 
 
 
 
 
 
 
 
 
 
 

 
 
 

TABLE I 

EXPERIMENTAL DATA hyc /  VS. tHH /Δ  IN PRESENT STUDY [21] 

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

hyc /  0.94 0.71 0.58 0.58 0.41 0.25 0.24 0.08 0.07 0.04 0.31 0.22 0.13 0.06 

tHH /Δ  21.75 6.55 15.05 4.79 23.06 35.56 24.10 43.46 33.07 84.07 34.19 44.45 54.75 48.65 

Row 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

hyc /  0.02 0.18 0.17 0.17 0.17 0.16 0.16 0.15 0.14 0.12 0.10 0.08 0.05 0.04 

tHH /Δ  94.43 49.02 49.26 53.02 56.76 52.95 54.30 54.61 58.41 61.59 76.33 83.42 91.71 88.42 
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TABLE II 

 EXPERIMENTAL DATA hyc /  VS. tHH /Δ  IN MOORE [3] STUDY 

Row 1 2 3 4 5 6 7 8 9 10 11 

hyc /  0.07 0.09 0.11 0.17 0.2 0.25 0.255 0.325 0.335 0.5 1 

tHH /Δ  57.02 53.1 52.22 37.04 33.13 27.84 23.91 20.11 20.92 13.11 7.82 

 

TABLE III 

 EXPERIMENTAL DATA hyc /  VS. tHH /Δ  IN CHAMANI AND RAJARATNAM [7] STUDY 

Row 1 2 3 4 5 6 7 8 

hyc /  0.1 0.12 0.14 0.16 0.2 0.25 0.3 0.35 

tHH /Δ  47.03 43.91 41.81 37.04 37.82 28.73 23.9 20.02 

 

TABLE IV 

 EXPERIMENTAL DATA hyc /  VS. tHH /Δ  IN RAND [6] STUDY 

Row 1 2 3 4 5 6 7 

hyc /  0.11 0.17 0.23 0.28 0.31 0.35 0.4 

tHH /Δ  48.3 21.82 17.81 19.14 17.03 17.02 16.1 

III. RESULTS 
Several runs of the physical models were performed and a 

wide range of hydraulic variables were measured. The 
measured data have been statistically analyzed. For improve 
head loss prediction, ANN was used and comparison between 
them performed. The following sections present these parts of 
the research program.  

Effect of air bubbles entrainment  

Energy at downstream before hydraulic jump calculated 
with y1 and y2.  Where y1 is depth before hydraulic jump and 
y2 is depth after hydraulic jump. Energy at the toe of drop is 
calculated using equations  11 and 12. 
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Relative energy loss is expressed by equation  13. 

t
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Relative energy loss between upstream of drop and 
downstream of drop (before hydraulic jump), are calculated 
using two methods as follows:  
(a)-Use of measured depth before hydraulic jump (y1). 

(b)-Use of measured depth after hydraulic jump (y2). 

To apply the second method, depth of clear water (without 
air bubbles) after hydraulic jump was measured. Fig. 3 
illustrates the results of the energy loss analysis by both 
methods for the drop with 70cm height. 
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Fig. 3 Effect of air bubbles on relative energy loss at drop with 70cm 
height 

As shown in Fig. 3, the relative energy loss is a function of 
discharge (or yc). Increasing in discharge results the 
decreasing in relative energy loss and shows larger difference 
between calculated energy dissipation by two methods. The 
value of difference reaches 19.5% for the maximum discharge 
which denotes when the aerated-flow depth (y1) is used to 
calculate the energy loss, it is significantly overestimated. 
Comparison of different studies results  

To find the accuracy of this work, authors have compared 
findings of the present study with the other reported studies in 
the literature. Fig. 4 has shown this comparative section. 
Overall, Fig. 4 shows that the relative energy loss at drop 
structures is decreased with increasing in h/yc. Good 
agreement between the present study and Moore [3], Chamani 
and Rajaratnam [7] and Rand [6] exist. As shown in the Fig. 
4, White's [4] result is more higher than the present study 
results and the other studies findings.  It can be seen that the 
relative energy loss in this study varies from almost 8% (for 
yc/h=0.94) to 94.3% (for yc/h=0.02).Based on Fig. 4, Rand [6] 
results show lower energy dissipation and White [4] results 
show higher energy dissipation. USBR [22] suggested use of 
equation (2) for energy dissipation estimation for drop design. 
Average 11% energy dissipation for inclined jet in Chamani 
and Rajaratnam [7] experiment, show that the energy 
dissipation at a drop is mainly due to the mixing of the jet with 
the pool behind the jet.By application of EXCEL software for 
regression, two best curve fitness for data obtained as 
equations 14 and 15 for present study data.  

 

Fig. 4 Comparison of different studies results  
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Fig. 5 Relation between y1/h, y2/h, Lp/h and yp/h vrs. yc/h in drop 

(                 Present experiment and                     Rand [6] experiment) 
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In equations 14 and 15, n is number of experimental data and 
R2 is deterministic coefficient. 

In Fig. 5 the results of measured y1, y2, Lp and yp with 
comparison the Rand’s [6] experiment was presented. 

Present experiment results show that there is good fitness 
for y1/h and y2/h value with Rand [6] experiments. But for 
Lp/h and yp/h there are not fitness between present and Rand 
[6] experiment. Probably high oscillated impinging jet in pool 
behind drop wall reduces the accuracy of depth measurement. 
Results of application of regression analysis gave the best 
curve fitness for observation data as equations 16-19: 
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In Fig. 6 the results of measured experimental for present 
study for 28 data point, Moore [3] for 11 data point, Chamani 
and Rajaratnam [7] for 8 data point and Rand [6] for 7 data 
point in vertical drop was presented. 

Results of application of regression analysis gave the best 
curve fitness for all observation data referred in Fig. 6 as 
equation 20 (forth order polynomial) and equation 
21(logarithm). 
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ANN modeling 
The ANN software program employed was NeuroSolutions. 

The first step to designing any neural network is to collect 
training data. By using the "Browse" button to select an input 
file, NeuralBuilder will scan the input file and present a list of 
the columns that it finds. The data for training the ANN model 
were generated using the experimental data on vertical drop 
described above. A dataset consisting of a total of 54 points 
resulting from the combination of different yc/h as inputs 
and tHH /Δ as output was used for training the ANN model. 
10% of total input data was selected as test data and 10% of 
total input was selected as cross validation. Cross validation is 
a highly recommended method for stopping network training. 

This method monitors the error on an independent set of data 
and stops training when this error begins to increase. This is 
considered to be the point of best generalization. Panel in Fig. 
7, allows specifying both the cross validation and testing data 
sets. 
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Fig. 6 Relation between tHH /Δ  vrs. yc/h in vertical drop for all data (present study; Moore [3]; 

 Chamani and Rajaratnam [7] and Rand [6] 
 

TABLE V 
 PREDICTION ERRORS FOR THE TRAINING AND TESTING DATASET OF THE HEAD LOSS ASSOCIATED WITH DIFFERENT ANN CONFIGURATIONS 

   Training Test 

Transfer function No. of hidden layers No. of neurons/layer RMS R2 RMS R2 

Sigmoid 1 2 0.0384 0.978 0.0422 0.968 

Sigmoid 1 3 0.0375 0.978 0.0406 0.974 

Sigmoid 1 4 0.0383 0.977 0.0386 0.977 

Sigmoid 1 5 0.0085 0.977 0.0039 0.976 

Sigmoid 1 6 0.0388 0.977 0.0382 0.976 
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Sigmoid 1 8 0.0369 0.977 0.038 0.977 

Sigmoid 1 10 0.0399 0.976 0.038 0.974 

Hyperbolic Tangent 1 5 0.0372 0.978 0.0388 0.976 

Gaussian 1 5 0.0404 0.974 0.0374 0.979 

Sigmoid 2 2 , 2 0.0385 0.977 0.0411 0.973 

Sigmoid 2 2 , 3 0.0401 0.974 0.0374 0.979 

 

 

Fig. 7 Panel in NeuroSolutions allows to specify both 
 the cross validation and testing data sets 

 
The optimal ANN configuration was selected from amongst 

various ANN configurations based on their predictive 
performance. The two error measures used to compare the 
performance of the various ANN configurations were: 
determination coefficient (R2) and root mean square error 
(RMSE).In order to find the optimal network, several 
configurations were tried in which the number of hidden 
layers varied from one to two and the number of neurons 
within each hidden layer varied from two to 10 (Table V). 
Multilayer perceptrons (MLPs) are layered feed forward 
networks typically trained with static back propagation. These 
networks have found their way into countless applications 
requiring static pattern classification. Their main advantage is 
that they are easy to use, and that they can approximate any 
input/output map. The key disadvantages are that they train 
slowly, and require lots of training data (typically three times 
more training samples than network weights).Panel in Fig. 8 is 
used to specify the parameters a layer of processing elements 
(PEs). NeuroSolutions simulations are vector based for 
efficiency. This implies that each layer contains a vector of 
PEs and that the parameters selected apply to the entire vector. 
The parameters are dependent on the neural model, but all 
require a nonlinearity function to specify the behavior of the 
PEs. In addition, each layer has an associated learning rule 

and learning parameters. The numbers of PEs and learning 
parameters are entered in the corresponding fields. The 
learning rule and nonlinearity are selected from a list of 
options contained within pull-down menus. 

 

Fig. 8 Panel for specify the parameters a layer of processing elements 
(PEs) 

 
Based on Table V, ANN with one hidden layer has enough 

accuracy and architecture 2,5,1 (input layer having two 
neurons, one hidden layer with 5 neuron; one output neuron) 
have minimum RMS and maximum R2. So architecture 2,5,1 
with Sigmoid transfer function could be selected in this case. 
It is seems that using ANNs for head loss in drops or similar 
problems is due to researchers interesting to check how 
ANNs, work for nonlinear problems. In this way, we have 
tried also to handle ANNs capability in nonlinear relation 
between yc/h and tHH /Δ . As shown in Fig. 9, result is 
acceptable in estimating head loss.Trained network was able 
to predict the response with R2 and RMSE 0.977 and 0.0085 
respectively (Table V). This ANN model is capable of 
predicting the values of head loss in vertical drop and was in 
close agreement with experimental results.  
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Fig. 9 Plot of f values as predicted by ANN and observed data 

 
IV. CONCLUSION 

This paper presents an experimental study the results of 
hydraulic laboratory study on the energy dissipation in three 
physical models. Relative energy dissipation on drops 
calculated by using both y1 and y2 (sequent depth). In section 
where y1 measured, there was air bubble in the flow, while in 
section where y2 measured there was little air entrainment. In 
addition ANN model has R2 and RMSE values 0.977 and 
0.0085 respectively and was capable of predicting the values 
of head loss in vertical drop and was in close agreement with 
laboratory tests.  
Results showed that: 

• Application of measured depth y1 instead of sequent 
depth (y2), results more energy dissipation. In facs air 
entraiment in flow (reductions in viscasity), causes to 
redue shear stress and finlay redues the energy 
dissipation property. Also air entraiment causes to 
increase flow bulk and so flow depth. This problem 
causes erorr in calculating energy loss. 

• Increasing in discharge, causes reduction in energy 
dissipation. 

• Comparison between this study’s results and results 
of Moore [3], Rand [6], White [4], Rajaratnam and 
Chamani [7], showed that White’s [4] model over 
estimates the energy dissipation in drops and Rand’s 
[6] model under estimates the energy loss in drops. 
The others can predict the energy dissipation in drops 
as same as the proposed statistical model. 

• This work has also indicated that the loss at drop is 
mainly due to the mixing of the jet with the pool 
behind the jet. 

• ANN  model is capable of predicting the values of 
head loss in vertical drop and was in close agreement 
with experimental results. 
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