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Abstract—The problem of mapping tasks onto a computational 

grid with the aim to minimize the power consumption and the 
makespan subject to the constraints of deadlines and architectural 
requirements is considered in this paper. To solve this problem, we 
propose a solution from cooperative game theory based on the 
concept of Nash Bargaining Solution. The proposed game theoretical 
technique is compared against several traditional techniques. The 
experimental results show that when the deadline constraints are 
tight, the proposed technique achieves superior performance and 
reports competitive performance relative to the optimal solution. 
 

Keywords—Energy efficient algorithms, resource allocation, 
resource management, cooperative game theory. 

I. INTRODUCTION 
OWER management in various computing systems is 
widely recognized to be an important research problem. 

Power consumption of Internet and Web servers accounts for 
8% of the US electricity consumption. By reducing the 
demand for energy, the amount of CO2 produced each year by 
electricity generators can also be mitigated. For example, 
generating electricity for the next generation large-scale data 
centers would release about 25M tons of additional CO2 each 
year [19]. Power consumption is also a critical and crucial 
problem in large distributed computing systems, such as, 
computational grids because they consume massive amounts 
of power and have high cooling costs. These systems must be 
designed to meet functional and timing requirements while 
being energy-efficient. The quality of service delivered by 
such systems depends not only on the accuracy of 
computations, but on their timeliness [36]. 

A computational grid (or a large distributed computing 
system) is composed of a set of heterogeneous machines, 
which may be geographically distributed heterogeneous 
multiprocessors that exploit task-level parallelism in 
applications. Resource allocation in computational grids is 
already a challenging problem due to the need to address 
deadline constraints and system heterogeneity. The problem 
becomes more challenging when power management is an 
additional design objective because power consumption of the 
system must be carefully balanced against other performance 
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measures. Power management can be achieved by two 
methods. The Dynamic Power Management (DPM) [27] 
approach brings a processor into a power-down mode, where 
only certain parts of the computer system (e.g., clock 
generation and time circuits) are kept running, while the 
processor is in an idle state. The Dynamic Voltage Scaling 
(DVS) [34] approach exploits the convex relation between the 
CPU supply voltage and power consumption. The rationale 
behind DVS technique is to stretch out task execution time 
through CPU frequency and voltage reduction. 

Power-aware resource allocation using DVS can be 
classified as static and dynamic techniques. Static techniques 
are applied at design time by allocating and scheduling 
resources using off-line approaches, while dynamic 
techniques control the runtime behavior of the systems to 
reduce power consumption. 

The traditional resource allocation and scheduling theory 
deals with fixed CPU speed, and hence cannot be directly 
applied to this situation. In this paper, we study the problem of 
power-aware task allocation (PATA) for assigning a set of 
tasks onto a computational grid each equipped with DVS 
feature. The PATA problem is formulated as multi-
constrained multi-objective extension of the Generalized 
Assignment Problem (GAP). PATA is then solved using a 
novel solution from cooperative game theory based on the 
celebrated Nash Bargaining Solution (NBS) [22]; we shall 
acronym this solution concept as NBS-PATA.    

The rest of the paper is organized as follows: A brief 
discussion of related work is presented in Section II. The 
PATA problem formulation and background information are 
discussed in Section III. In Section IV, we model a 
cooperative game played among the machines for task 
allocation with the objective to minimize power consumption 
and makespan, simultaneously. Experimental results and 
concluding remarks are provided in Sections V and VI, 
respectively. 

II. RELATED WORK 
Most DPM techniques utilize power management features 

supported by hardware. For example, in [4], the authors 
extend the operating system's power manager by an adaptive 
power manager (APM) that uses the processor's DVS 
capabilities to reduce or increase the CPU frequency thereby 
minimizing the overall energy consumption [6]. The DVS 
technique at the processor-level together with a turn on/off 
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technique at the cluster-level to achieve high power savings 
while maintaining the response time is proposed in [11]. In 
[26] the authors introduce a scheme to concentrate the 
workload on a limited number of servers in a cluster such that 
the rest of the servers can remain switched-off for a longer 
time. Other techniques use a utilization bound for scheduling 
a-periodic tasks [1], [2] to maintain the timeliness of 
processed jobs while conserving power. 

While the closest techniques to combining device power 
models to build a whole system has been presented in [13], 
our approach aims at building a general framework for 
autonomic power and performance management where we 
bring together and exploit existing device power management 
techniques from a whole system's perspective. Furthermore, 
while most power management techniques are either heuristic-
based approaches [15], [16], [19], [30], or stochastic 
optimization techniques [10], [29], [34], we use game theory 
to seek radically fast and efficient solutions compared with the 
traditional approaches, e.g., heuristics, genetic algorithms, 
linear and dynamic programming, branch-and-bound etc. With 
game theoretical techniques the solution may not be globally 
optimal in the traditional sense, but would be optimal under 
given circumstances [17].  

Another advantage of using game theory is that our overall 
management strategy allows to use lower level information to 
dynamically tune the high-level management policies freeing 
the need to execute complex algorithms [18]. The proposed 
generic management framework not only enables us to 
experiment with different types of power management 
techniques ranging from heuristic approaches but also 
provides a mechanism to consolidate power management with 
other autonomic management objectives pertinent to 
computational grids, such as fault-tolerance and security.  

III. PROBLEM FORMULATION 

A. Background Information  
The power consumption in CMOS circuits is captured by 

the following: 
2

EFFP V f C= × × ,                                                        (1) 
where V,  f, and CEFF are the supply voltage, clock 

frequency, and effective switched capacitance of the circuits. 
It is to be understood that time to finish an operation is 
inversely proportional to the clock frequency. This 
relationship can be extended to gather an insight on the energy 
consumption of the processor, by simply recalling that energy 
is power times time. Therefore, the energy per operation, Eop, 
is proportional to V2. This implies that lowering the supply 
voltage will reduce the energy consumption of the system in a 
quadratic fashion. However, lowering the supply voltage also 
decreases the maximum achievable clock speed. More 
specifically, f is (approximately) linearly proportional to V [5]. 
Therefore, we have: 

3P f∝ , and 2
opE f∝ .                                                (2) 

A computing device’s power consumption can be 

significantly reduced by running the device’s CPU at a slower 
frequency. This is the key idea behind the DVS technology. In 
conventional system design with fixed supply voltage and 
clock frequency, clock cycles, and hence energy, are wasted 
when the CPU workload is light and the processor becomes 
idle. Reducing the supply voltage in conjunction with the 
clock frequency eliminates the idle cycles and saves the 
energy significantly. We have: 

3P t−∝ , and 2
opE t−∝                                                   (3) 

since f ∝ t-1, where t is the time to complete an operation. 
Thus, the reduction of the supply voltage would reduce the 
energy dissemination, it would substantially slow down the 
time to complete an operation – a balance is needed.  

B. The System Model 
We consider the system as a collection of machines that 

comprise the computational grid and the collection of tasks. 
Machines: Consider a computational grid comprising of a 

set of machines, M = {m1, m2, …, mm}. Assume that each 
machine is equipped with a DVS module. Each machine is 
characterized by: 

1. The frequency of the CPU, fj, given in cycles per unit 
time. With the help of a DVS, fj can vary from fj

min to 
fj

max, where 0 < fj
min < fj

max. From frequency it is easy to 
obtain the speed of the CPU, Sj, which is simply the 
inverse of the frequency. 

2. The specific machine architecture, A(mj). The 
architecture would include the type of CPU (Intel, 
AMD, RISC), bus types and speeds in GHz, I/O, and 
memory in Bytes.  

Tasks: Consider a metatask, T = {t1, t2, …, tn}, where ti is a 
task. Each task is characterized by:  

1. The computational cycles, ci, that it needs to complete. 
(The assumption here is that the ci is known a priori.) 

2. The specific machine architecture, A(ti), that it needs to 
complete its execution. 

The deadline, di, before it has to complete its execution. 
It is obvious that the metatask, T, also has a deadline, D, 

which is met if and only if the deadlines of all its tasks are 
met. 

C. Preliminaries 
Suppose we are given a computational grid and a metatask, 

T, and we are required to map T on the computational grid 
such that all the characteristics of the tasks and the deadline 
constraint of T are fulfilled. We term this fulfillment as a 
feasible task to machine mapping. A feasible task to machine 
mapping happens when:  

1. Each task ti∈T can be mapped to at least one mj subject 
to the fulfillment of all the constraints associated with 
each task: Computational cycles, architecture, and 
deadline. 

2. The deadline constraint of T is also satisfied. 
3. The number of computational cycles required by ti to 

execute on mj is assumed to be a finite positive number, 
denoted by cij. The execution time of ti under a constant 
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speed Sij, given in cycles per second is tij = cij/Sij.  
A task, ti, when executed on machine mj draws, pij amount 

of power. Lowering the power, will lower the CPU frequency 
and consequently will decrease the speed of the CPU, and 
hence cause ti to possibly miss its deadline. For simplicity 
assume that the overhead of switching the CPU frequency is 
minimal and hence ignored. 

The architectural requirements of each task are recorded as 
a tuple with each element bearing a specific requirement. We 
assume that the mapping of architectural requirements is a 
boolean operation. That is, the architectural mapping is only 
fulfilled when all of the architectural constraints are satisfied, 
otherwise not. 

D. Problem Statement 
Given is a computation grid and a metatask T. Find the task 

to machine mapping, where: 
“The total power utilized by the computational grid is 

minimized such that the makespan of the metatask, T, is 
minimized.” 

Mathematically, we can say:  

1

min
n m

ij ij

i j i

p x
= =

∑∑ such that 
1

1

min max
n

ij ij
j m

i

t x
≤ ≤

=

∑  subject to 

{0,1}, 1, 2, ..., ; 1, 2, ... .
ij

x i n j m∈ = =                                  (4)

if   , , ,  such that ( ) ( ),  then 1
i j i j ij

t m i j A t A m x→ ∀ ∀ = =     (5)

, , , 1
ij ij i ij

t x d i j x≤ ∀ ∀ =    (6)

( ) {0,1}
ij ij i

t x d≤ ∈                                                           (7)

1

( ) 1, , , 1
n

ij ij i ij

i

t x d i j x
=

≤ = ∀ ∀ =∏                                        (8)

Constraint (4) is the mapping constraint, when xij =1, a task, 
ti, is mapped to machine, mj. Constraint (5) elaborates on this 
mapping in conjunction to the architectural requirements and 
it states that a mapping can only exists if the architecture is 
mapped. Constraint (6) relates to the fulfillment of the 
deadline of each task, and constraint (7) tells us about the 
boolean relationship between the deadline and the actual time 
of execution of the tasks. Constraint (8) relates to the deadline 
constraints of the metatask, which will hold if and only if all 
the deadlines of the tasks, di, i =1, 2, …n, are satisfied.  

This formulation is in the same form as that of a GAP 
except for constraints (6), (7), and (8). The major difference 
between PATA and GAP is that the capacity of resources in 
PATA, in terms of the utilization of power, are defined in 
groups, whereas in case of GAP, they are defined 
individually.  

IV. PROPOSED GAME THEORETICAL TECHNIQUE 
We consider the system model described in Section 3. The 

cooperative game presented here considers each machine in 
the computational grid as a player. The goal of the players is 
to execute task in a manner that reduces the overall makespan 
of the metatask, while keeping the aggregate power 
consumption to its minimum. If pij is the power consumed and 
tij is the time taken by machine j to execute task i, then the 
objective of the cooperative game is to minimize both pij and 
tij. Hypothetically, we can express this cooperative game 
(CG1) as:   

1

min
n m

ij ij

i j i

p x
= =

∑∑  such that
1

1

min max
n

ij ij
j m

i

t x
≤ ≤

=

∑   

subject to (4), (5), (6), (7), (8) and 

1 1

n m

ij

i j

p P
= =

≤∑∑                                                                      (9) 

0, 1, 2, ..., ; 1, 2, ...
ij

p i n j m≥ = =                                         (10) 
The conservation condition (9) states that the total power 

allocated is bounded. Clearly, the power consumption has to 
be a positive number (10). These constraints make the PATA 
problem convex. Otherwise, the NBS set of points can grow 
exponentially, making the extraction of an agreement point an 
NP-hard problem. 

In transforming the problem, the above cooperative game 
(CG1) is equivalent to the following cooperative game (CG2):  

( )
1

max
n m

ij ij

i j i

p x
= =

−∑∑ such that ( )
1

1

max min
n

ij ij
j m

i

t x
≤ ≤

=

−∑   

subject to (4), (5), (9) 
( ) , , , 1

ij ij i ij
t x d i j x− ≥ − ∀ ∀ =                                               (11) 

( )( ) {0,1}
ij ij i

t x d− ≥ − ∈                                                    (12) 

( )( )
1

1, , , 1
n

ij ij i ij

i

t x d i j x
=

− ≥ − = ∀ ∀ =∏                                (13) 

0, 1, 2, ..., ; 1, 2, ... .
ij

p i n j m− ≤ = =                                      (14) 
Based on the above, we can formulate a cooperative game 

as follows. The machines in the computational grid are the 
players, each having fj(x) = - pij as an objective function. In a 
cooperative game, all players need to optimize their objective 
functions simultaneously.   

Assume that all players are able to achieve performance 
strictly superior to the initial performance, that is the set J = 
M. The initial performance of player j is given by γj

0. This 
corresponds to the peak power consumption of the machine j. 
This will always be an agreeable point because this is the 
minimum acceptable performance, but another NBS with 
greater performance is desired by reducing the power as much 
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Input: Machines each initialized to its maximum power using the DVS ={dvs1, dvs2, ….dvsl}. 
Output: A task to machine mapping consumes the minimum power and that has the minimum possible makespan. 

1. For i = 1 to n 
2. Sort the machines in decreasing order of their current power consumption: p1≥ p2 ≥…≥ pm. 
3. pav = (∑ pj)/m 
4. while (pav  > pm) do 

a.  m = m – 1 
b.  pav = (pav – (pm+1/m+1)) (m+1/m) 

5. If the architectural constraint (5) is met then goto Step 5a else goto Step 5c. 
a. If the smallest dvsl that satisfies the deadline constraint (6) is found then goto Step 5b else goto Step 6. 
b. Assign task ti to machine mm with dvsl, update pm and goto Step 2. 
c. If m > 1 then m = m – 1 and goto Step 4 else goto Step 6. 

6. Initialize all machines to maximum power and goto Step 2. 
 

Fig. 1 The pseudo-code for the proposed technique 

 
 

TABLE I 
VARIOUS PARAMETRIC VALUES FOR THE COEFFICIENT OF VARIANCE METHOD 

 
Variable Values 

Vtask  {0.10, 0.50} 
μtask 2×1012 
αtask {2, 10} 
βtask  {2×1011, 1×1012} 
Vmach  {0.10, 0.50} 
μmach  [1.315×1010, 6.5214×1014] 
αmach  {2, 10} 
βtask {[1.32×109, 6.58×109], [6.52×1013, 3.26×1014]} 

 
 

as possible. 
Theorem 1 (NBS-PATA): The NBS for the cooperative 

PATA game is determined by solving the following 
optimization problem. 

( )0

1

max
n m

j ij ij ij
i j i

x p xγ
= =

−∑∑ such that
1

1

max min
n

ij ij
j m

i

t x
≤ ≤

=

−∑   

subject to (4), (5), (9), (10) (11), (12), (13). 
Proof: Consider fj(γj) = -pij which is concave and bounded 

above, and hence guarantees a solution but with higher 
complexity. The set of solutions determined by the constraint 
is convex and compact, and hence is not always guaranteed 
but has a lower complexity. Using the fact that fj(γj) = -pij are 
1-1 functions of pij the results follows.                                  ■ 

Now, assume that the machines in the computational grid 
are sorted in the decreasing order of their current power 
consumption. Given such a list, we assign a task to the 
machine that is currently running on a power just above the 
weighted average power consumption. The assignment 
warrants adjusting the power consumption to the appropriate 
DVS level DVS = {dvs1, dvs2, ….dvsl} as to which the 
machine can guarantee the deadline associated with the task. 
This procedure is applied until a feasible solution is found. 

Based on Theorem 1, we derive an algorithm (called NBS-
PATA) for obtaining NBS for the cooperative PATA game. 

The pseudo-code for NBS-PATA is depicted in Fig. 1. 
Theorem 2 (Correctness of the NBS-PATA): The power 

adjustments, pijs, computed by the NBS-PATA technique 
solve the optimization problem in Theorem 4. 

Proof: The while loop in Step 4a finds the minimum index 
m for which 

1 1

n m

m ij

i j

p P mγ
= =

< −⎛ ⎞⎜ ⎟
⎝ ⎠
∑∑                                                (15) 

If |J| = |M| then it means that all γjs are positive. Applying 
Theorem 6 and the proof follows. 
If |J| < |M| (which may be the most probable case) then we get  

| |

1 1

| |
n m

J ij

i j

p P Jγ
= =

< −⎛ ⎞⎜ ⎟
⎝ ⎠
∑∑                                             (16) 

when γjs are sorted as γ1 ≥ γ2 ≥ … ≥ γ|J|. 
Now, we know that γ|J| ≠ 0. Also, we know that NBS-PATA 

will not allocate any tasks to γ|J| in the while loop. The only 
argument that we need to be concerned with is the integrity of 
the while loop. That can be answered by showing that at any 
given instance, the while loop always produces a task to 
machine assignment that is covered by Theorem 1. By 
definition, the while loop if stooped at an instance where the 
first k machines were dealt with, then those k machines will 
correspond to the k fastest machines that bare the power 
consumption of γ1, γ2, …, γk. But we know from Theorem 1 
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that a machine j’s best strategy is: 

1 ,

n

j ik

i k M k j

p P mγ
= ∀ ∈ ≠

= −⎛⎛ ⎞ ⎞⎜⎜ ⎟ ⎟
⎝⎝ ⎠ ⎠

∑ ∑                                       (17) 

and in terms of power is given as:  

1 ,

n

ij ik

i k M k j

p p P m
= ∀ ∈ ≠

= −⎛⎛ ⎞ ⎞⎜⎜ ⎟ ⎟
⎝⎝ ⎠ ⎠

∑ ∑                                       (18) 

This completes the proof.                                                 ■ 
The execution of NBS-PATA technique is in O(n mlog(m)). 

The complexity is determined by observing that Step 2 in Fig. 
1 takes O(mlog(m)). Step 2 enclosed in Step 1 which takes 
O(n). This polynomial time complexity is possible because the 
objective functions are convex; however, in general 
determining an NBS is an NP-hard problem [25].  

V.  EXPERIMENTS AND DISCUSSIONS 
In this section, we demonstrate the quality of solutions 

produced by our NBS-PATA technique. The simulation study 
assumed synthetic task sets (explained in the subsequent text). 
We set forth two major goals for our experimental study: 

1. To measure and compare the performance of NBS-
PATA against 1) the optimal solution and 2) the min-
min heuristic [8].  

2. To measure the impact of system parameter variations, 
such as, the tightness of the task related constraints. 

Based on the size of the problems, the experiments were 
divided in two parts. For small size problems, we used an 
Integer Linear Programming tool called LINDO [28]. LINDO 
is useful to obtain optimal solutions, provided the problem size 
is relatively small. Hence for small problem sizes, the 
performance of the NBS-PATA is compared against 1) the 
optimal solution using LINDO and 2) the min-min heuristic 
[8]. The LINDO implementation and the min-min heuristic do 
not consider power as an optimization constraint; however, 
they are very effective for the optimization of the makespan. 
Thus, the comparison provides us with a wide range of results. 
On one extreme we have the optimal algorithm, on the other a 
technique which scales well with the corresponding increase in 
the problem size. For large size problems, it becomes 
impractical to compute the optimal solution by LINDO. 
Hence, we only consider comparisons against the min-min 
heuristic.  

The system heterogeneity is captured by the distribution of 
the number of CPU cycles, cij, on different mjs. Let C denote 
the matrix composed by cij, where i = 1, 2, …, n and j = 1, 2, 
…,m. The C matrix was generated using the coefficient of 
variation method described in [3]. The method requires 
various inputs which are reported in Table I. di, the deadline of 
task ti was generated using the method described in [36]. Let 
wi be the largest value among the elements in the i-th row of C 
and let wis corresponding machine be denoted by m0. Let Z = 
n/m, where n is the number of tasks and m is the number of 
machines. di is calculated as K × (wi/Sm0) × Z, where K is a 
pre-specified positive value for adjusting the relative deadlines 

of tasks and Sm0 is the speed of machine m0 running at DVS 
level of 100%. For this study, we keep the architectural 
affinity requirements confined to memory. (Adding other 
requirements such as, I/O, processor type, etc. will bear no 
affect on our experimental setup or theoretical results.) Each 
machine is assigned a memory on random from within the 
range [500-5000] GB, while each task is associated a 
corresponding memory requirement on random from within 
the range [20-50] MB. 

For small size problems, the number of machines was fixed 
at 5, while the number of tasks varied from 20 to 40. The 
number of DVS levels per machine was set to 4. The 
frequencies of the machines were randomly mapped from 
within the range [200MHz-2000MHz]. We assumed that the 
potential difference of 1mV across a CMOS circuit generates a 
frequency of 1MHz. For large size problems, the number of 
machines was fixed at 16, while the number of tasks varied 
from 1000 to 5000. The number of DVS levels per mj was set 
to 8. Other parameters were the same as those for small size 
problems. 

Min-min: The Min-min heuristic begins with the set U of 
all unmapped tasks. Then, the set of minimum completion 
times, CT = {cti | cti = minj tij, for each i ∈ U}. Next, the task 
with the overall minimum completion time from CT is selected 
and assigned to the corresponding machine. Lastly, the newly 
mapped task is removed from U, and the process repeats until 
all tasks are mapped. 

Comparative results: The experimental results for small 
size problems with K equal to 1.5 and 1.0 are reported in Figs. 
2 and 3. These figures show the ratio of the makespan 
obtained from the two techniques and the optimal. The plots 
clearly show that the NBS-PATA technique performs 
extremely well and achieves a performance level of 10%-15% 
of the optimal when K was set at a very tight bound 1.0.   

For large problem instances, first, we compare the 
makespan identified by the min-min and the NBS-PATA 
technique. Since the min-min heuristic does not optimize 
power consumption, we compared the min-min with a version 
of NBS-PATA that ran on full power and also compared it 
with the (original) version that optimized power. Figs. 4 and 5 
show the relative performance of the techniques with various 
values of K, Vtask, and Vmach. The results indicate that NBS-
PATA outperforms the min-min technique in identifying a 
smaller makespan when power is not considered as an 
optimization criteria. The performance of NBS-PATA is 
notably superior to the min- min technique when the deadline 
constraints are relatively loose. It can also be observed that 
NBS-PATA, when considering power as an optimization 
resource, identifies a task to machine mapping that produces a 
makespan that is within 5%-10% of the min-min technique. It 
was noticed that the relative performance of the min-min 
technique was much better for large size problems, compared 
with small size problems, because with the increase in the 
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Fig. 2 Makespan ratio of min-min and 
NBS-PATA over optimal 

  Fig. 3 Makespan ratio of min-min and 
NBS-PATA over optimal 

  Fig. 4 Makespan 

     

 

  

Fig. 5 Makespan  Fig. 6 Power consumption  Fig. 7 Power consumption 
 
 

TABLE II 
AVERAGE EXECUTION TIME (SEC.) OF THE THREE TECHNIQUES 

 
Problem size K = 1.5, m = 5 K = 1.0, m = 5 
No. of tasks 20 20 20 20 20 20 25 30 35 40 
Optimal 0.2732 0.2934 0.2934 0.2934 0.2934 0.2934 0.3470 0.4183 0.4938 0.5290 
Min-Min 0.0032 0.0031 0.0031 0.0031 0.0031 0.0031 0.0042 0.0045 0.0052 0.0057 
NBS-PATA 0.0673 0.0793 0.0793 0.0793 0.0793 0.0793 0.0872 0.0971 0.1004 0.1159 

 
TABLE III  

AVERAGE EXECUTION TIME (SEC.) OF THE THREE TECHNIQUES 
 

Problem size K = 0.50, m = 16 K = 0.25, m = 16 
No. of tasks 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 
Min-Min 0.1395 0.1470 0.1537 0.1682 0.1753 0.1534 0.2985 0.3408 0.4485 0.5230 
NBS-PATA 5.8401 8.3245 4.8314 6.4984 8.7219 5.7817 6.4629 7.3901 8.0293 9.6038 

 
 
 
size of the C matrix, the probability of obtaining larger values 
of wis also increases. Moreover, the relative performance of 
NBS-PATA was also much better for large size problems, 
compared with small size problems, because the DVS levels 
for the large problem size are twice more than the DVS levels 
for the small problem size. 

Next, we compare the power consumption of both the 
techniques. Figs. 6 and 7 reveal that on average the NBS-
technique utilizes 60%-65% less power as compared to the 
min-min technique. That is a significant amount of savings 
considering that the makespan identified by NBS-PATA is 
within 5%-10% of the makespan identified by the min-min 
technique. 

Lastly, we analyze the running time for both small and large 
problem sizes. For completion, the running time of the optimal 
for small problem size is also presented for comparisons. It 

can be seen that when the number of tasks increase, the ratio 
of running time of NBS-PATA to that of the min-min heuristic 
decreases in the case of small problem size from 22 to 17 and 
in the case of large problem size from 56 to 18. The results are 
depicted in Tables II and III. 

VI. CONCLUSIONS 
This paper presented a power-aware resource allocation 

strategy in computational grids for multiple tasks. The 
problem was formulated as an extension of the Generalized 
Assignment Problem. A solution from cooperative game 
theory based on the concept of Nash Bargaining Solution 
(NBS-PATA) was proposed for this problem. We proved 
through rigorous mathematical proofs that the proposed NBS-
PATA can guarantee pareto-optimal solutions in mere O(n 
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mlog(m)) time (where n is the number of tasks and m is the 
number of machines). The solution quality of the NBS-PATA 
was experimentally compared against the optimal (for small 
problems sizes) and the min-min heuristic (for large problem 
sizes). The experimental results confirm superior performance 
of the proposed scheme in terms of reduction in power 
consumption, makespan compared to the min-min heuristic, 
and comparative solution compared to the optimal. 

We plan to study power-aware resource allocation problems 
which fulfill application specific demands. We also plat to 
investigate power-aware resource allocation techniques that 
cater for dynamic environments and which allocate resource 
on run-time. Moreover, modeling, measuring, and optimizing 
the communication, the messages, and the energy costs offer 
new challenges, especially in sensor networks, primarily 
because the communication is carried out in an ad hoc 
environment. We plan on extending our current study to 
dynamic, real-time, and ad hoc environments. 
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