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Abstract—In this paper, a wavelet-based neural network (WNN) 

classifier for recognizing EEG signals is implemented and tested 
under three sets EEG signals (healthy subjects, patients with epilepsy 
and patients with epileptic syndrome during the seizure). First, the 
Discrete Wavelet Transform (DWT) with the Multi-Resolution 
Analysis (MRA) is applied to decompose EEG signal at resolution 
levels of the components of the EEG signal (δ, θ, α, β and γ) and the 
Parseval’s theorem are employed to extract the percentage 
distribution of energy features of the EEG signal at different 
resolution levels. Second, the neural network (NN) classifies these 
extracted features to identify the EEGs type according to the 
percentage distribution of energy features. The performance of the 
proposed algorithm has been evaluated using in total 300 EEG 
signals. The results showed that the proposed classifier has the ability 
of recognizing and classifying EEG signals efficiently. 
 

Keywords—Epilepsy, EEG, Wavelet transform, Energy 
distribution, Neural Network, Classification.  

I. INTRODUCTION 
PILEPSY is one of the world’s most common 
neurological diseases, affecting more than 40 million 

people worldwide. Epilepsy’s hallmark symptom, seizures, 
can have a broad spectrum of debilitating medical and social 
consequences [1]. Although antiepileptic drugs have helped 
treat millions of patients, roughly a third of all patients are 
unresponsive to pharmacological intervention. Understanding 
of this dynamic disease evolves; new possibilities for 
treatment are emerging. An area of great interest is the 
development of devices that incorporate algorithms capable of 
detecting early onset of seizures or even predicting those hours 
before they occur. This lead time will allow for new types of 
interventional treatment. In the near future a patient’s seizure 
may be detected and aborted before physical manifestations 
begin. 
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Electroencephalogram (EEG) has established itself as an 
important means of identifying and analyzing epileptic seizure 
activity in humans. In most cases, identification of the 
epileptic EEG signal is done manually by skilled 
professionals, who are small in number [2]. The diagnosis of 
an abnormal activity of the brain functionality is a vital issue. 
EEG signals involve a great deal of information about the 
function of the brain. But classification and evaluation of these 
signals are limited. Since there is no definite criterion 
evaluated by the experts, visual analysis of EEG signals in 
time domain may be insufficient. Routine clinical diagnosis 
needs to analysis of EEG signals. Therefore, some automation 
and computer techniques have been used for this aim.  

Recent applications of the wavelet transform (WT) and 
neural network (NN) to engineering-medical problems can be 
found in several studies that refer primarily on the signal 
processing and classification in different medical area. WT 
applied for EEG signal analyses and WNN applied for 
classification of EEG signals is not a new concept. Several 
papers in different ways applied WT to analyze EEG signals 
and combine the WT and NN in the process of classification. 
Some of the papers are listed in the references [2]-[27].  

This paper presents an algorithm for classification of EEG 
signals based on wavelet transformation (WT) and patterns 
recognize techniques. Discrete Wavelet Transform (DWT) 
with the Multi-Resolution Analysis (MRA) is applied to 
decompose EEG signal at resolution levels of the components 
of the EEG signal (δ, θ, α, β and γ) and the Parseval’s theorem 
are employed to extract the percentage distribution of energy 
features of the EEG signal at different resolution levels. The 
neural network (NN) classifies these extracted features to 
identify the EEGs type according to the percentage 
distribution of energy features.  

The paper is organized as follow. The methodology the 
proposed process is presented in Section II of this paper. Test 
results of classifications are given in Section III. Conclusions 
are given in Section IV.  

II. METHODOLOGY 

A. Wavelet Transform 
The wavelet transform (WT) introduces a useful 

representation of a function in the time-frequency domain [28-
31]. Basically, a wavelet is a function ( )RL2∈ψ  with a zero 
average 
 

( )∫
+∞

∞−
= 0dttψ .                                                                       (1) 
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The Continuous Wavelet Transformation (CWT) of a signal 

( )tx  is then defined as: 
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where ( )tψ  is called the mother wavelet, the asterisk denotes 
complex conjugate, while a and b ( )Rba ∈,  are scaling 
(dilation and translation) parameters, respectively. The scale 
parameter a  determines the oscillatory frequency and the 
length of the wavelet, and the translation parameter b  
determines its shifting position. 

The application of WT in engineering areas usually requires 
the discrete WT (DWT). The DWT is defined by using 
discrete values of the scaling parameter a and the translation 
parameter b . To do so, set maa 0=  and manbb 00= , then we 

get ( ) ( )00
2

0, nbtaat mm
nm −= −− ψψ , where Znm ∈, , and m  is 

indicating frequency localization and n  is indicating time 
localization. Generally, we can choose 20 =a and 10 =b . This 
choice will define a dyadic-orthonormal WT and provide the 
basis for multi-resolution analysis (MRA). In MRA, any time 
series ( )tx  can be completely decomposed in terms of 
approximations, provided by scaling functions ( )tmφ  (also 
called father wavelet) and the details, provided by the 
wavelets ( )tmψ . The scaling function is associated with the 
low-pass filters (LPF), and the wavelet function is associated 
with the high-pass filters (HPF). The decomposition procedure 
starts by passing a signal through these filters. The 
approximations are the low-frequency components of the time 
series and the details are the high-frequency components. The 
signal is passed through a HPF and a LPF. Then, the outputs 
from both filters are decimated by 2 to obtain the detail 
coefficients and the approximation coefficients at level 1 (A1 
and D1). The approximation coefficients are then sent to the 
second stage to repeat the procedure. Finally, the signal is 
decomposed at the expected level. 

According to Parseval’s theorem, the energy of the distorted 
signal can be partitioned at different resolution levels. 
Mathematically this can be presented as: 

liDED
N

j
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where li ,......,1=  is the wavelet decomposition level from 
level 1 to level l. N is the number of the coefficients of detail 
or approximate at each decomposition level. iED is the energy 
of the detail at decomposition level i and lEA is the energy of 
the approximate at decomposition level l. 

B. Artificial Neural Networks 
Artificial neural networks (ANNs) are formed of cells 

simulating the low-level functions of biological neurons. In 
ANN, knowledge about the problem is distributed in neurons 
and connections weights of links between neurons [15]. The 
neural network must be trained to adjust the connection 
weights and biases in order to produce the desired mapping. 
At the training stage, the feature vectors are applied as input to 
the network and the network adjusts its variable parameters, 
the weights and biases, to capture the relationship between the 
input patterns and outputs. ANNs are particularly useful for 
complex pattern recognition and classification tasks. ANNs 
are widely used in the biomedical field for modeling, data 
analysis and diagnostic classification. The most frequently 
used training algorithm in classification problems is the back-
propagation (BP) algorithm, which is used in this work also.  

There are many different types and architectures of neural 
networks varying fundamentally in the way they learn, the 
details of which are well documented in the literature [34-36].  

C. Proposed Methodology  
The clinical interests in (EEG) are; for example, sleep 

pattern analysis, cognitive tasks registration, seizure and 
epilepsy detection, and other states of the brain, both normal 
and patho-physiological. Epilepsy is the second most 
prevalent neurological disorder in humans after stroke. It is 
characterized by recurring seizures in which abnormal 
electrical activity in the brain causes altered perception or 
behavior. Well-known causes of epilepsy may include: genetic 
disorders, traumatic brain injury, metabolic disturbances, 
alcohol or drug abuse, brain tumor, stroke, infection, and 
cortical malformations (dysplasia). 

The EEG signal contains a several spectral components. 
The amplitude of a human surface EEG signal is in the range 
of 10 to 100 μV. The frequency range of the EEG has a fuzzy 
lower and upper limit, but the most important frequencies 
from the physiological viewpoint lie in the range of 0.1 to 30 
Hz. The standard EEG clinical bands are the delta (0.1 to 3.5 
Hz), theta (4 to 7.5 Hz), alpha (8 to 13 Hz), and beta (14 to 30 
Hz) bands [1]. EEG signals with frequencies greater than 30 
Hz are called gamma waves. 

The datasets used in this research are selected from the 
Epilepsy center in Bonn, Germany by Ralph Andrzejak [32]. 
The data consists of five groups, free EEG signals both in 
normal subjects and epileptic patients. The first two groups are 
recorded from five healthy subjects: with open (A) and closed 
eyes (B). The third and fourth groups are recorded prior to a 
seizure from part of the brain with the epilepsy syndrome (C) 
and from the opposite (healthy) hemisphere of the brain (D). 
The fifth group (E) is recorded from part of the brain with the 
epilepsy syndrome during the seizure. Three sets denoted A, C 
and E is used in this work. Each set contains 100 single 
channel EEG segments of 23.6-sec duration at a sampling rate 
of fs = 173.61 Hz. Set A consisted of segments taken from 
surface EEG recordings that were obtained from five healthy 
volunteers using a standardized electrode placement. Set E 
only contained seizure activity.  
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The object of wavelet analysis is to decompose signals into 
several frequency bands. Selection of appropriate wavelet and 
the number of decomposition levels are very important for the 
analysis of signals using DWT. The number of decomposition 
levels is chosen based on the dominant frequency components 
of the signal. The levels are chosen such that those parts of the 
signal that correlate well with the frequencies necessary for 
classification of the signal are retained in the wavelet 
coefficients. In this work, Daubechies 4 (db4) is selected 
because its smoothing feature was suitable for detecting 
changes of the EEG signals. Daubechies wavelets are the most 
popular wavelets representing foundations of wavelet signal 
processing, and are used in numerous applications. A detailed 
discussion about the characteristics of these wavelet functions 
can be found in the reference [14]. 

The frequency band [fm/2 : fm] of each detail scale of the 
DWT is directly related to the sampling rate of the original 
signal, which is given by fm= fs/2l+1, where fs is the sampling 
frequency, and l is the level of decomposition. In this study, 
the sampling frequency is 173.6 Hz of the EEG signal. The 
highest frequency that the signal could contain, from Nyquist’ 
theorem, would be fs/2. Frequency bands corresponding to five 
decomposition levels for wavelet db4 with sampling frequency 
of 173.6 Hz of EEG signals were listed in Table I. The signals 
were decomposed into details D1-D5 and one final 
approximation A5. 

 
TABLE I 

FREQUENCY BANDS CORRESPONDING TO DIFFERENT DECOMPOSITION 
LEVELS 

DECOMPOSED SIGNALS FREQUENCY BANDS 
(HZ) DECOMPOSITION LEVEL 

D1 43.4-86.8 1 (noises) 
D2 21.7-43.4 2 (gama) 
D3 10.8-21.7 3 (beta) 
D4 5.40-10.8 4 (alpha) 
D5 2.70-5.40 5 (theta) 
A5 0.00-2.70 5 (delta) 

 
Classification of EEG signals requires the use of pattern 

recognition techniques. Pattern recognition is a process of 
perceiving a pattern of a given object based on the knowledge 
already possessed [33]. So automated pattern recognition uses 
various artificial intelligence techniques like fuzzy logic (FL), 
artificial neural networks (ANN) and adaptive fuzzy logic 
(AFL) for the classification of disturbance signals. Recently, 
techniques based on probabilistic models like Hidden Markov 
models, Dynamic time wrapping, Dempster-Shafer theory of 
evidence are also proposed.  

An algorithm block diagram for classification of EEG 
signals is presented on Fig. 1. The algorithm structure is based 
on two stages: feature extraction stage (FES) and classification 
stage (CS). The input of the CS is a preprocessed signal. In 
this case, EEG signal in the time domain is transformed into 
the wavelet domain before applying as input to the CS. 
Feature extraction is the key for pattern recognition. A feature 
extractor should reduce the pattern vector (i.e., the original 
waveform) to a lower dimension, which contains most of the 
useful information from the original vector. In this algorithm, 

after realizing the FES (preprocessing), using detail and 
approximation coefficients in each decomposition level 
obtained from WT and MRA, the CS (processing) is 
implemented by using neural network (NN). NN are good at 
tasks such as pattern-matching and classification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Block diagram for classification of EEG signals 
 
In the classification stage, the proposed wavelet energy 

distribution features are applied as input to NN. NN is a 
powerful pattern recognition tool. It is defined as software 
algorithms that can be trained to learn the relationships that 
exist between input and output data, including nonlinear 
relationships. Feed-Forward Neural Network (FFNN) is used 
to classify different EEG signals. The basic unit of a NN is the 
neuron, which realizes a function of weighted summation. A 
FFNN structure can be considered as an algebraic operator, 
such as weighted summation and multiplication. So, it is 
possible to reconstruct a wide class of algorithms by using a 
multiplier module.  

III. ENERGY DISTRIBUTION OF EEG SIGNALS AND 
CLASSIFICATION RESULTS 

Using MRA and Db4 wavelet function the three sets of the 
EEG signals (A set-100 EEG signals of the healthy patient, C 
set-100 EEG signals of the epilepsy patient in steady state and 
E set-100 EEG signals of the epilepsy patient during the 
seizure) was performed according to the percentage energy 
distribution of decomposition levels. 

Energy distribution diagrams of EEG signals for different 
analyses cases are shown in Fig. 2. It shows the energy 
distribution of the analyzed signals: a) 100 samples of EEG 
signals of healthy subjects (A set); b) 100 samples of EEG 
signals of patients with epileptic syndrome (C set) and c) 100 
samples of EEG signals of patients with epilepsy syndrome 
during the seizure (E set). It can be recognized different 
distribution of energy of the analyzed signals, which is 
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generally quite similar for each group of EEG signals. It was 
noted in the EEG signal of healthy subjects, that energy 
activity in the frequency components of the D3 and D4 (beta 
and alpha) wave is quite similar and their percentage of the 
value of the total energy of the signal is around 20%. Energy 
activity in the frequency range D5 component (theta wave) is 
slightly lower of intensity and the percentage of its value in 
the total energy signal value is around 10%. Percentage value 
of total energy in the EEG signals in the frequency 
components of the D2 (gamma wave) is approximately 5%. 
Noise is negligibly small (D1) while the value of the 
frequency components of the D5 is about 45%, although for 
some samples it has a much higher value. 

Unlike the distribution of EEG signals of healthy subjects, 
the energy distribution of the signal of patients with epilepsy 
syndrome is obviously different. In comparison with EEG 
signals of healthy subjects, components of D2, D3 and D4 of 
the EEG signals, the total energy distribution of EEG signals 
involved with a significantly lower percentage, while the 
values of D5 and A5 signal is much larger. Energy distribution 
of EEG signals in which it is registered epileptic seizure is 
significantly different from the first two cases. Energy activity 
component D3, D4 and D5 are dominant, while somewhat less 
value are the components of delta waves (A5).  

The percentage of energy distribution can be used for 
classification of EEG signals. 

 NN are highly interconnected simple processing units 
designed in a way to model how the human brain performs a 
particular task. Each of those units, also called neurons, forms 
a weighted sum of its inputs, to which a constant term called 
bias is added. This sum is then passed through a transfer 
function: linear, sigmoid or hyperbolic tangent. The choice of 
number of hidden layers and the number of neurons in each 
layer is one of the most critical problems in the construction of 
neural architecture. In order to find the optimal network 
architecture, several combinations should be evaluated. These 
combinations include networks with different number of 
hidden layers, different number of units in each layer and 
different types of transfer functions. The FFNN model was 
provided in Matlab. 

Based on the feature extraction, 6-dimensional feature sets 
(D1, D2, D3, D4, D5 and A5) for training and testing data 
were constructed. The dimensions here describe different 
features resulting from the wavelet transform, that is to say, 
the total size of training data or testing data set is 6×300. 
Considering the classification performance of this method, this 
input vector is applied as the input to the WNN structure. The 
training parameters and the structure of the WNN used in this 
study are shown in Table II. 

 

 
a) 

 
b) 

 
c) 

Fig. 2.  Energy distribution diagram (%) of the a) A set-100 EEG 
signals of the healthy patient, b) C set-100 EEG signals of the 
epilepsy patient in steady state and c) E set-100 EEG signals of the 
epilepsy patient during the seizure 

 
They were selected to obtain best performance, after several 

different experiments, such as the number of hidden layers, the 
size of the hidden layers, value of the moment constant and 
learning rate, and type of the activation functions. The data for 
each experiment are selected randomly. In Table III presented 
are classification results of WNN algorithm where 250 data 
sets were used to train the NN model and 50 data sets were 
used for testing process. The system can correctly classify 47 
of the 50 different EEG signals in the testing set, as shown in 
Table III. The classified accuracy rate of the EEG signals of 
the proposed approach was 94.0%. Hundred percent correct 
classification rates are obtained for normal EEG signals. 
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TABLE II 

NN ARCHITECTURE AND TRAINING PARAMETERS  
ARCHITECTURE 
THE NUMBER OF LAYERS 3 
THE NUMBER OF NEURON ON THE 
LAYERS INPUT: 6, HIDDEN: 5, OUTPUT: 1 

THE INITIAL WEIGHTS AND BIASES RANDOM 
ACTIVATION FUNCTIONS TANGENT SIGMOID 
TRAINING PARAMETERS 

LEARNING RULE LEVENBERG–MARQUARDT BACK-
PROPAGATION 

MEAN-SQUARED ERROR 1E-01 
 

TABLE III 
EEG CLASSIFICATION RESULTS OF WNN ALGORITHM 

CLASS HEALTHY EPILEPSY 
SYNDROME SEIZURE ACCURACY 

[%] 

HEALTHY 16 0 0 100.0 

EPILEPSY 
SYNDROME 2 17 0 88.2 

SEIZURE 0 1 14 92.9 
OVERALL SUCCESS RATE 94.0 

 

IV. CONCLUSION 
Epileptic seizures are manifestations of epilepsy. The 

detection of epileptiform discharges in the EEG is an 
important component in the diagnosis of epilepsy. As EEG 
signals are non-stationary, the conventional method of 
frequency analysis is not highly successful in diagnostic 
classification. In this paper, an algorithm for classification of 
EEG signal based on WT and PRT has been proposed. DWT 
with the MRA is applied to decompose EEG signal at 
resolution levels of the components of the EEG signal and to 
extract the percentage distribution of energy features of the 
EEG signal at different resolution levels. The FFNN classifies 
these extracted features to identify the EEGs type according to 
the percentage distribution of energy features. The results 
showed that the proposed classifier has the ability of 
recognizing and classifying EEG signals efficiently. The most 
important advantage of the proposed method is the reduction 
of data size as well indicating and recognizing the main 
characteristics of signal.  Furthermore, it can reduce memory 
space, shorten pre-processing needs, the network size and 
increase computation speed for the classification of an EEG 
signal. 

 

REFERENCES   
[1] S. Tong and N.V.Thacor, Engineering in Medicine & Biology- 

Quantitative EEG Analysis Methods and Clinical Applications, 
Boston/London: Artech House, 2009. 

[2] L. M. Patnaika and O. K. Manyamb, "Epileptic EEG detection using 
neural networks and post-classification" Computer methods and 
programs in biomedicine- Elsevier, vol. 91, pp. 100-109. 2008. 

[3] A. Prochazka, J. Kukal and O.Vysata, "Wavelet transform use for 
feature extraction and EEG signal segments classification," in Proc. 
2008 IEEE Communications, Control and Signal Processing, 3rd 
International Symposium, pp. 719 - 722. 

[4] V. Bostanov and B. Kotchoubey, "Recognition of affective prosody: 
Continuous wavelet measures of event-related brain potentials to 
emotional exclamations," Psychophysiology, vol. 41, pp. 259–268, 2004. 

[5] M. Murugappan, M. Rizon, R. Nagarajan, S. Yaacob, I. Zunaidi, and D. 
Hazry, "EEG Feature Extraction for Classifying Emotions using FCM 
and FKM," Int. Journal of Computers and Comunications, vol. 1, pp. 
21-25, 2007. 

[6] C. Wang, J. Zou, J. Zhang, M. Wang and R. Wang, "Feature extraction 
and recognition of epileptiform activity in EEG by combining PCA with 
ApEn", Biomedical and Life Sciences- Springer, vol. 4, pp. 233-240, 
2010. 

[7] L. Guo, D. Rivero, J. A. Seoane and A. Pazos, "Classification of EEG 
Signals Using Relative Wavelet Energy and Artificial Neural 
Networks," GEC’09, Shanghai, China, 2009. 

[8] M. Akin, M. A. Arserim, M. K. Kiymik and I. Turkoglu, "A New 
Approach For Diagnosing Epilepsy By Using Wavelet Transform And 
Neural Networks," in Proc. 2001  IEEE/EMBS 23rd Annual Conference, 
pp. 1596 – 1599. 

[9] H. S. Liu, T. Zhang and F. S. Yang, "A Multistage, Multimethod 
Approach for Automatic Detection and Classification of Epileptiform 
EEG," IEEE Transactions on Biomedical Engineering, vol. 49, pp. 1557 
– 1566, 2002. 

[10] P. Jahankhani, V. Kodogiannis, and K. Revett, "EEG Signal 
Classification Using Wavelet Feature Extraction and Neural Networks," 
in Proc. 2003 International Symposium on Modern Computing, pp. 120 
– 124.  

[11] A. A. Mashakbeh, "Analysis Of Electroencephalogram To Detect 
Epilepsy," Int. Journal Of Academic Research, vol. 2, pp. 63-69, 2010. 

[12] M. M. Shaker, "EEG Waves Classifier using Wavelet Transform and 
Fourier Transform," Int. Journal of Biological and Life Sciences, vol. 1, 
pp. 85-90, 2005. 

[13] I. Omerhodzic, E. Causevic, K. Dizdarevic, S. Avdakovic, M. Music, M. 
Kusljugic, E. Hajdarpasic, N. Kadic, “First neurosurgical experience 
with the wavelet based EEG in diagnostic of concussion," 11th Congress 
of Neurosurgeons of Serbia, Nis, Serbia, 2008. Abstract book p. 18.  

[14] L. M. Patnaik, O. K. Manyam, “Epileptic EEG detection using neural 
networks and post-classification”. Comput Methods Programs Biomed. 
2008 Aug;91(2):100-9. 

[15] A. Subasi, E. Erçelebi, “Classification of EEG signals using neural 
network and logistic regression”. Comput Methods Programs Biomed. 
2005 May;78(2):87-99. 

[16] K. Asaduzzaman, M. B. Reaz, F. Mohd-Yasin, K. S. Sim, M. S. 
Hussain, “A study on discrete wavelet-based noise removal from EEG 
signals”, Adv Exp Med Biol. 2010;680:593-9. 

[17] H. Adeli, Z. Zhou, N. Dadmehr. “Analysis of EEG records in an 
epileptic patient using wavelet transform”, J Neurosci Methods. 2003 
Feb 15;123(1):69-87. 

[18] L. Guo, D. Rivero, J. Dorado, J. R. Rabuñal, A. Pazos, “Automatic 
epileptic seizure detection in EEGs based on line length feature and 
artificial neural networks”, J Neurosci Methods. 2010 Aug 
15;191(1):101-9. 

[19] A. S. Zandi, M. Javidan, G. A. Dumont, R. Tafreshi, “Automated real-
time epileptic seizure detection in scalp EEG recordings using an 
algorithm based on wavelet packet transform”, IEEE Trans Biomed Eng. 
2010 Jul;57(7):1639-51. 

[20] P. Mirowski, D. Madhavan, Y. Lecun, R. Kuzniecky, Classification of 
patterns of EEG synchronization for seizure prediction. Clin 
Neurophysiol. 2009 Nov;120(11):1927-40. 

[21] A. S. Zandi, G. A. Dumont, M. Javidan, R. Tafreshi, B. A. MacLeod, C. 
R. Ries, E. A. Puil, “A novel wavelet-based index to detect epileptic 
seizures using scalp EEG signals”, Conf Proc IEEE Eng Med Biol Soc. 
2008;2008:919-22. 

[22] A. Subasi, A. Alkan, E. Koklukaya, M. K. Kiymik, “Wavelet neural 
network classification of EEG signals by using AR model with MLE 
preprocessing”, Neural Netw. Sep 2005, vol. 18(7), 985-997. 

[23] S. J. Schiff, A. Aldroubi, M. Unser, S. Sato, “Fast wavelet 
transformation of EEG”, Electroencephalogr Clin Neurophysiol. Dec 
1994, vol. 91(6), 442-455. 

[24] L. Senhadji, J. L. Dillenseger, F. Wendling, C. Rocha, A. Kinie, 
“Wavelet analysis of EEG for three-dimensional mapping of epileptic 
events”, Ann Biomed Eng. Sep-Oct 1995, 23(5):543-52. 

[25] C. E. D'Attellis, S. I. Isaacson, R. O. Sirne, “Detection of epileptic 
events in electroencephalograms using wavelet analysis”, Ann Biomed 
Eng. Mar-Apr 1997, 25(2):286-93. 

[26] H. Adeli, S. Ghosh-Dastidar, N. Dadmehr, “A wavelet-chaos 
methodology for analysis of EEGs and EEG subbands to detect seizure 
and epilepsy”, IEEE Trans Biomed Eng. Feb 2007, 54(2):205-11. 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:4, No:1, 2010

11

 

 

[27] H. Leung, K. Schindler, A. Y. Chan, A. Y. Lau, K. L. Leung, E. H. Ng, 
K. S. Wong, “Wavelet-denoising of electroencephalogram and the 
absolute slope method: a new tool to improve electroencephalographic 
localization and lateralization”, Clin Neurophysiol. Jul 2009, 
120(7):1273-81. 

[28] I. Daubechies, Ten Lectures on Wavelets, Philadelphia: Society for 
Industrial and Applied Mathematics, 1992. 

[29] H. He and J. A. Starzyk, "A Self-Organizing Learning Array System for 
Power Quality Classification Based on Wavelet Transform," IEEE 
Transaction On Power Delivery, vol. 21(1), pp. 286-295, 2006. 

[30] S. Mallat, A Wavelet Tour of Signal Processing, San Diego, CA: 
Academic, 1998. 

[31] S. Avdakovic and A. Nuhanovic, "Identifications and Monitoring of 
Power System Dynamics Based on the PMUs and Wavelet Technique," 
International Journal of Energy and Power Engineering, vol. 3, pp. 202-
209, 2010. 

[32] R. G. Andrzejak, K. Lehnertz, C. Rieke, F. Mormann, P. David, C. E. 
Elger, “Indications of nonlinear deterministic and finite dimensional 
structures in time series of brain electrical activity: Dependence on 
recording region and brain state, Phys. Rev. E, 64, 061907. [Online] 
Available: http://epileptologie-bonn.de/cms/  

[33] P. Settipalli, "Automated Classification Of Power Quality Disturbances 
Using Signal Processing Technique and Neural Network", Ph.D. 
dissertation, University of Kentucky; USA, 2007. 

[34] S. Dreiseitl, L. Ohno-Machado, Logistic regression and artificial neural 
network classification models: a methodology review, J. Biomed. 
Inform. vol. 35, 352-359, 2002. 

[35] I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, 
computing, design, and application, J. Microbiol. Methods vol. 43, 3-31, 
2000. 

[36] [38] B.B. Chaudhuri, U. Bhattacharya, Efficient training and improved 
performance of multilayer perceptron in pattern classification, 
Neurocomputing vol. 34, 11-27, 2000. 
 

 
 


