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Encrypted audio communication based on
synchronized unified chaotic systems

C. Cruz-Hernández, E. Inzunza-González, R.M. López-Gutiérrez H. Serrano-Guerrero, and E.E.García-Guerrero

Abstract—In this paper, encrypted audio communications based
on synchronization of coupled unified chaotic systems in master-slave
configuration is numerically studied. We transmit the encrypted audio
messages by using two unsecure channels. Encoding, transmission,
and decoding audio messages in chaotic communication is presented.
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I. INTRODUCTION

DUring the last decades, synchronization of two coupled
chaotic systems has received great attention from math-

ematicians, physicists, biologists, control engineers, etc. see
e.g. [1]-[7]. This interest has been greatly motivated by the
possibility of encrypted information transmission by using a
chaotic carrier, see e.g. [4, 8-14].

Based on chaos synchronization of two unified systems
reported in [15], the aim of this paper is to study the
encrypted audio transmission. In particular, this objective is
achieved by synchronizing the unified chaotic systems via
Generalized Hamiltonian forms and observer design proposed
in [5]. Recently, was shown in [15] that the mentioned
approach is indeed suitable to synchronize two coupled unified
chaotic systems in master-slave configuration. In this work,
we transmit encrypted audio messages via insecure channels
between two remote points.

The present study shows the encrypted and recovery of
audio messages by using two unified systems. In particular,
when Lorenz-Lorenz, Chen-Chen, and Lü-Lü chaotic systems
are operated.

The remainder of this paper is organized as follows: In
Section II, the system communication description is given.
In Section III, the model of the unified chaotic system is
described. Section IV presents the synchronization of two uni-
fied chaotic systems by using Hamiltonian forms and observer
approach. In Section V, encrypted audio transsmision is shown.
The paper is concluded with some remarks in Section VI.
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Fig. 1. Chaotic cryptosystem for audio communication.

II. SYSTEM COMMUNICATION DESCRIPTION

In this section, a cryptosystem based on synchronized
chaotic systems is described. The aim is to transmit encrypted
audio messages from transmitter A to remote receiver B as
is depicted in Fig. 1. An audio message is to be transmit-
ted over an insecure communication channel. To avoid any
unauthorized receiver (intruder O) located at the mentioned
channel; is encrypted prior to transmission to generate an
encrypted message ,

= ( )

by using a chaotic system on transmitter A.
The encrypted message is sent to receiver B, where is

recovered as ˆ from the chaotic decryption , as

ˆ = ( )

If and have used the same key , then at receiver end B it
is possible to obtain ˆ = . A secure channel (dashed line)
is used for transmission of the keys, . Generally, this secure
communication channel is a courier and is too slow for the
transmission of . Our chaotic cryptosystem is reliable, if it
preserves the security of , i.e. if 0 6= for even the best
cryptanalytic function , given by

0 = ( )

To achieve the proposed chaotic encryption scheme, we appeal
to unified chaotic system for encryption/decryption purposes
( and , respectively).

The unified chaotic system have a number of parameters
determining their dynamics; such parameters and initial con-
ditions are the coding “keys”, . We expect that it can perform
the objective of the secure communication and the transmitting
audio messages can be recovered at the receiver B. In order to
guarantee the encryption and decryption, the unified chaotic
systems have to achieve the so-called synchronization on both
chaotic transmitter A and receiver B.



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:6, 2010

987

-20
-15

-10
-5

0
5

10
15

20

-30

-20

-10

0

10

20

30
0

5

10

15

20

25

30

35

40

45

50

X
1

X
2

X
3

Fig. 2. Lorenz attractor projected onto the ( 1 2 3)-space.
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Fig. 3. Chen attractor projected onto the ( 1 2 3)-space.

III. UNIFIED CHAOTIC SYSTEM

Consider the unified chaotic system [16], described by

˙1 = (25 + 10) ( 2 1) (1)
˙2 = (28 35 ) 1 1 3 + (29 1) 2

˙3 = 1 2

μ
+ 8

3

¶
3

where the parameter [0 1], for the whole interval the
unified system is chaotic. Obviously, when = 0 the system
(1) is the original Lorenz system [17]. While for = 1 the
system (1) is the original Chen system [18]. For = 4 5 the
system (1) corresponds to the critical (Lü) system [19]. In fact,
the system (1) bridges the gap between the Lorenz and Chen
systems [16].

By using the initial conditions (0) = (0 1 0 1 0 01), Figs.
2, 3, and 4 show the chaotic attractors of Lorenz, Chen, and
Lü respectively, projected onto ( 1 2 3)-space.

IV. SYNCHRONIZATION OF TWO UNIFIED CHAOTIC
SYSTEMS

Considering the following chaotic system described by the
state equation

˙ = ( ) (2)

where R is the state vector, : R R is a nonlinear
function. In [5] was reported how the chaotic system (2) can be
rewritten in the following Generalized Hamiltonian canonical
form,

˙ = J ( ) + S ( ) + F ( ) R (3)
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Fig. 4. Lü attractor projected onto the ( 1 2 3)-space.

In addition, in the context of observer design, we consider
a special class of Generalized Hamiltonian forms with linear
output map , given by

˙ = J ( ) + (I + S) + F ( ) R (4)

= C R

Denoting the estimate of the state by , and considering
the Hamiltonian energy function ( ) to be the particular-
ization of in terms of . Similarly, we denote by the
estimated output, computed in terms of the estimated state .

A nonlinear state observer for the special class of General-
ized Hamiltonian form (4) is given by

˙ = J ( ) + (I + S) + F ( ) + ( ) (5)

= C R

with R and is the observer gain.
The state estimation error, defined as = and the

output estimation error, defined as = , are governed
by

˙ = J ( ) + (I + S C) R (6)

= C R

Definition 1 (Chaotic synchronization) [7]. The slave system
(5) (nonlinear state observer) synchronizes with the chaotic
master system in the special class of Generalized Hamiltonian
form (4), if

lim k ( ) ( )k = 0 (7)

no matter which initial conditions (0) and (0) have. Where
the state estimation error ( ) = ( ) ( ) represents the
synchronization error.

In the sequel, we synchronize two unified chaotic systems
(1) in master-slave configuration (see Fig. 5), via General-
ized Hamiltonian forms and observer design proposed in [5].
Firstly, we rewrite the unified system (1) in Hamiltonian form
as the master system and design a state observer for (1) like
the slave system, as follows. Taking as Hamiltonian energy
function to
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Fig. 5. Master-slave synchronization scheme.

( ) =
1

2

¡
2
1 +

2
2 +

2
3

¢
(8)

and gradient vector as

=
1 0 0
0 1 0
0 0 1

1

2

3

=
1

2

3

(9)

The unified system (1) in Hamiltonian form according to Eq.
(4) (as master system) is given by

˙1
˙2
˙3

=
0 30 9 0

(30 9) 0 1

0 1 0
(10)

+

(25 + 10) 5 + 19 0
5 + 19 29 1 0

0 0 ( +8)
3

The output signal to be transmitted to slave system is =
[1 0 0] = 1. The matrices C, S, and I, are given by

C =
£
1 0 0

¤

S =

(25 + 10) 5 + 19 0
5 + 19 29 1 0

0 0 ( +8)
3

I =
0 30 9 0

(30 9) 0 0
0 0 0

In [15] was shown that the pair of matrices (C S) constitutes
a pair detectable, but non observable. Thus, it is possible to
design an observer for master system (10) (as slave system)
according to Eq. (5), is as follows

·
1·
2·
3

=
0 30 9 0

(30 9) 0
0 0

(11)

+

(25 + 10) 5 + 19 0
5 + 19 29 1 0

0 0 ( +8)
3

+
1

2

3

1

= 1

where the synchronization error is defined as 1 = . From
(10) and (11) the synchronization error dynamics is governed
by

Fig. 6. Audio communication scheme

·
1
·
2
·
3

=
0 30 9 0

(30 9) 0
0 0

(12)

+

(25 + 10) 5 + 19 0
5 + 19 29 1 0

0 0 ( +8)
3

In [15] was given the stability conditions which guarantees
asymptotic stability to zero of ( ) Eq. (12). Based on the
mentioned conditions, we have selected 1 = 11, 2 = 50,
and 3 = 32 which guarantee the convergence of the synchro-
nization error Eq. (12) to zero.

V. ENCRYPTED AUDIO COMMUNICATION

In this section, we describe the communication system based
on synchronized chaos. Fig. 6 shows a block diagram to
transmit secret audio messages by chaotic additive masking
technique. We will use the unified system (1) as chaos
generator. With this scheme, we obtain faster synchronization
and higher privacy; one channel is used to send the chaotic
synchronizing signal 1( ) from the transmitter (10), with no
connection with the secret audio message ( ). While the
other channel is used to transmit hidden message ( ) which
is recovered at the receiver end by means of the comparison
between the signals 2( )+ ( ) and 2( ). Figure 6 shows the
chaotic secure communication system with two transmission
channels.

In this final part, via numerical simulations, we illustrate
the encrypted audio transmission.We use as transmitter and
receiver the unified chaotic system given in (1), for different
values of parameter , i.e. for Lorenz ( = 0), Chen system
( = 1), and Lü chaotic system ( = 4 5), and for initial con-
ditions (0) = (0 25 0 3 0 15) and (0) = (0 1 0 2 0 25).
The format of the audio signal ( ) is PCM 22.05 KHz, 16
Bits, monofonic channel. The mentioned audio message ( )
is to be encrypted and transmitted to the receiver.

Fig. 7 shows audio communication via Lorenz-Lorenz sys-
tems ( = 0). Original audio message ( ) to be encrypted
and transmitted (top of figure), transmitted chaotic signal
( ) = 2( ) + ( ) (middle of figure), and recovered audio

message ˆ ( ) (bottom of figure).
Fig. 8 shows audio communication by using Chen-Chen

systems ( = 1). Original audio message ( ) to be encrypted
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Fig. 7. Encrypted audio communication by using Lorenz-Lorenz systems.
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Fig. 8. Encrypted audio communication by using Chen-Chen systems.

and transmitted (top of figure), transmitted chaotic signal
( ) = 2( ) + ( ) (middle of figure), and recovered audio

message ˆ ( ) (bottom of figure).
Fig. 9 shows audio communication by using Lü-Lü systems

( = 4 5). Original audio message ( ) to be encrypted and
transmitted (top of figure), transmitted chaotic signal ( ) =

2( )+ ( ) (middle of figure), and recovered audio message
ˆ ( ) (bottom of figure).
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Fig. 9. Encrypted audio communication by using Lü-Lü systems.
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Fig. 10. Lorenz systems as transmitter and Chen systems as reciver.
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Fig. 11. Lorenz system as transmitter and Lü system as receiver.

Fig. 10 shows audio communication by using Lorenz system
as transmitter and the Chen system as receiver. Original audio
message ( ) to be encrypted and transmitted (top of figure),
transmitted chaotic signal ( ) = 2( ) + ( ) (middle of
figure), and recovered audio message ˆ ( ) (bottom of figure).

Fig. 11 shows audio communication by using the Lorenz
system as transmitter and Lü system as receiver. Original audio
message ( ) to be encrypted and transmitted (top of figure),
transmitted chaotic signal ( ) = 2( ) + ( ) (middle of
figure), and recovered audio message ˆ ( ) (bottom of figure).

Fig. 12 shows Lü system as transmitter and Chen system
as receiver. Original audio message ( ) to be encrypted and
transmitted (top of figure), transmitted chaotic signal ( ) =

2( )+ ( ) (middle of figure), and recovered audio message
ˆ ( ) (bottom of figure).
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Fig. 12. Lü system as transmitter and Chen system as receiver.

Amount
of points
of the
time serie

Lyapunov
Exponent
when

= 0
(Lorenz)

Lyapunov
Exponent
when

= 1
(Chen)

Lyapunov
Exponent
when

= 4
5

( ű)
60 0.0945573 0.0879170 0.0796389
100 0.0748100 0.075035 0.0692077
200 0.0358591 0.0471714 0.0511361
300 0.0398915 0.0556478 0.0529470
400 0.0334249 0.0608744 0.0558300
500 0.0297847 0.0573976 0.0548063
1,000 0.0268131 0.0572383 0.0630120
1,500 0.0335971 0.0554648 0.0605263
10,000 0.0487245 0.0514397 0.0552146
20,000 0.0480081 0.0494818 0.0548698

Remark 1. From Figs. 7, 8, and 9, we can see that the
original audio message can be faithfully recovered by the
receiver. Nevertheless, the level of encryption security depends
of the selected system, i.e. the parameter value of , which
is determined by the calculation of the Lyapunov exponentes,
see Table 1.

In Table 1 are shown the Lyapunov exponents from time
series of the transmitted chaotic signals = 2+ , which are
obtained from chaotic systems Lorenz ( = 0), Chen system
( = 1), and Lü system ( = 4 5), which are always chaotic.

Remark 2. From Figs. 10, 11, and 12, we can see that
is not possible to recover the original audio message at
the receiver; In general, if the systems in transmitter and
receiver are different. Nevertheless, for the particular case
when Lü-Chen (or Chen-Lü) are selected, see Fig. 12, there
exist some "vestiges" (or components) of the original audio
message, which means that under some proofs of spectral
anlysis, filtering stage, etc. the original audio message could
be recovered. This issue will be studied in future work. In
addition, a complete analysis on the sensibility of the initial
condition used as "keys" for the encryption.

VI. CONCLUSIONS

In this paper, we have presented the transmission of en-
crypted audio messages based on synchronization of unified
chaotic systems. This work have shown that the proposed
chaotic communication schemes show a great potential for
actual encryption communication systems in which the en-
coding is required to be secure. In a forthcoming article
we will be concerned with a physical implementation of the
synchronization of two chaotic unified systems in master-slave
configuration, and its application to private communication of
audio transmission in a network of users.
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