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 
Abstract—This paper presents a denoising method called EMD-

Custom that was based on Empirical Mode Decomposition (EMD) 
and the modified Customized Thresholding Function (Custom) 
algorithms. EMD was applied to decompose adaptively a noisy signal 
into intrinsic mode functions (IMFs). Then, all the noisy IMFs got 
threshold by applying the presented thresholding function to suppress 
noise and to improve the signal to noise ratio (SNR). The method was 
tested on simulated data and real ECG signal, and the results were 
compared to the EMD-Based signal denoising methods using the soft 
and hard thresholding. The results showed the superior performance 
of the proposed EMD-Custom denoising over the traditional 
approach. The performances were evaluated in terms of SNR in dB, 
and Mean Square Error (MSE). 

 
Keywords—Customized thresholding, ECG signal, EMD, hard 

thresholding, Soft-thresholding. 

I. INTRODUCTION 

HE EMD method has been widely used for analyzing the 
nonlinear and non-stationary signals. The aim of the EMD 

method is to adaptively decompose any signal into oscillatory 
components called IMFs using a sifting process [1]. The signal 
reconstruction process is achieved by total sum of the IMFs 
and the residual. Then, EMD was used for signals denoising in 
wide range of applications such as biomedical signals and 
acoustic signals [2]-[9]. The denoising method can be based 
on the signal estimation using all the IMFs previously 
thresholded as in wavelet analysis [2], [3]. The noise 
components of a noisy signal are centered on the first IMFs 
(high-frequency IMFs), and the useful information of the 
signal is often concentrated on the last IMFs (low-frequency 
IMFs) [4]. Thereby, the denoising method can also be based 
on the partial construction of the signal using only the last 
relevant IMFs [4], [5]. Several EMD-Based denoising 
methods using thresholding were proposed in [6]. Indeed, it 
was shown that the direct application of wavelet thresholding 
to IMFs can lead to very bad results for the continuity of the 
reconstructed signal. The main factors affecting the quality of 
Wavelet Threshold Denoising are threshold and selection of 
the suitable wavelet threshold function. The hard threshold 
function does not change the local properties of the signal, but 
it can lead to some fluctuation in the reconstruction of the 
original signal. The hard threshold function leads to a loss of 
some high frequency coefficients above the threshold. In order 
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to overcome the drawbacks of the classical threshold 
functions, Yoon and Vaidyajnathan proposed a customized 
thresholding function [10]. In this paper, we proposed a new 
customized thresholding function named EMD-Custom that 
can improve the results of soft and hard thresholding 
significantly. Numerical simulation and real data test were 
performed to evaluate this method, and the results were 
compared to EMD soft and hard threshold function in terms of 
SNR and MSE. 

The paper is organized as follows. Section II introduces the 
EMD algorithm. Section III describes the EMD-Soft, EMD-
Hard thresholding and the EMD-Custom thresholding. The 
simulation results are illustrated in section IV. Finally, Section 
V presents the conclusion. 

II. EMD ALGORITHM 

EMD is an adaptive method to decompose a signal )(tx  

into a series of IMFs. The IMFs must satisfy the following two 
conditions: 
(i) The number of maximum must equal the number of zeros 

or differ at most by one.  
(ii) In each period, it is necessary that the signal average is 

zero.  
The EMD algorithm consists of the following steps [1]: 

1. Find local maxima and minima in x(t) to construct the 
upper and lower envelopes respectively using cubic spline 
interpolation.  

2. Calculate the mean envelope )(tm  by averaging the upper 

and lower envelopes. 
3. Calculate the temporary local oscillation 

 

)()()( thtxth 
 

 

4. Calculate the average of ),(th  if average )(th  is close to 

zero, then )(th  is considered as the first IMF, named 

)(tci  otherwise, repeat steps (1)–(3) while using )(th  for 

)(tx . 

5. Calculate the residue )()()( tctxtr i . 

6. Repeat steps from (1)-(5) using )(tr  for )(tx  to obtain 

the next IMF and residue. 
The decomposition process stops when the residue )(tr  

becomes a monotonic function or a constant that no longer 
satisfies the conditions of an IMF. 
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III. EMD BASED DENOISING 

A. EMD Soft Thresholding and EMD Hard Thresholding 

Having a noisy signal )(ty  given by: 
 

)()()( ttxty                                 (2) 
 

where )(tx  is the noiseless signal and )(t  is independent 

noise of finite amplitude. In EMD-Soft thresholding method, 
the noisy signal )(ty  was first decomposed into noisy IMFs 

).(tcni  These noisy IMFs was thresholded by soft or hard 

function in order to obtain an estimation of the noiseless IMFs 
)(ˆ tci  of the noiseless signal. In this work, the universal 

threshold is used proposed in [11] and it identified as follows: 
 

)ln(2 nEC ii                             (3) 

 
where C is a constant depending of the type of signal that was 
set to 0.5 in this work, n is the length of the signal and iE  is 

given by [4]: 

Nk
E

E k
k ....4,3,2 ,01.2

719.0
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2
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where 2
1E  is the energy of the first IMF defined by: 
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A direct application of wavelet soft thresholding [12] in the 

EMD case: 















i   if)(

 if0

 if )(

)(ˆ





(t)ctc

(t)c

(t)ctc

tc

niini

ini

iniini

i                     (6) 

 
A direct application of wavelet hard thresholding [12] in the 

EMD case: 
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A reconstruction of the denoised signal is given by: 
 

)()(ˆ)(ˆ
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i
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                      (8) 

B. EMD-Custom Thresholding  

Based on [10], we defined a modified custom thresholding 
functions as follows: 
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where i 0  and .10   

A reconstruction of the denoised signal is given by “(8)”. 

IV. SIMULATION RESULTS  

In this section, we assess our proposed denoising algorithm 
compared to EMD-soft and EMD-hard denoising methods. 
The new EMD-Custom approach was applied to five test 
signals (Doppler, blocks, bumps, heavy sine, and piece-
regular). The size of the signals was equal to 2048. The 
method was also tested on real ECG signal using the MIT-BIH 
database [13]. For simulated signals, the SNR before 
denoising was maintained at 15 dB. The original signals and 
the corresponding noisy versions are depicted in Figs. 1 and 2. 
The SNR before denoising of the real ECG signal was 20 dB. 
Each noisy signal was decomposed into IMFs using EMD 
process, and all IMFs are thresholded by the soft, hard, and 
new customized thresholding functions. The performance of 
the proposed method was affected by the choice of the
value. However, in order to obtain the best results, the 
parameter   has to be chosen appropriately as shown in Fig. 
3 that depicts the SNR after denoising as function of  . The
 values for which the SNR after denoising are maximum are 
0.5, 0.4, 0.1, 0.3, 0.2, 0.2 for ECG, bumps, heavy sine, Piece 
Regular, blocks, and Doppler signals, respectively. A 
comparative study with soft and hard thresholding methods 
considered in this work is presented in Tables I-VI. Clearly, 
the modified custom thresholding function gives the best 
estimates in terms of SNR and MSE for all test signals. 
Therefore, the proposed EMD-Custom outperforms totally the 
conventional EMD-Soft and EMD-Hard thresholding 
methods. Fig. 4 shows the denoising results of applying EMD-
Soft and EMD-Custom to simulated signals. Fig. 5 displays 
the denoising results of real ECG signal using EMD-Soft and 
EMD-Custom. Fig. 6 illustrates the application of EMD to 
noisy ECG signal. Therefore, we conclude that our algorithm 
is, in general, able to remove noise from signals and it 
improves the results obtained by EMD hard thresholding and 
EMD soft thresholding.  
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Fig. 1 Test signals with n=2048 
 

 

Fig. 2 Noisy test signals SNR=15 dB 
 

 

Fig. 3 Performance evaluation of EMD-Custom SNR=5 dB 
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Fig. 4 Denoising results in SNR =15 dB of test signals corrupted by Gaussian noise 
 

 

Fig. 5 Denoising results in SNR (20 dB) of real ECG signal 
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Fig. 6 EMD decomposition of the noisy ECG signal with SNR=20 dB 
 

TABLE I 
COMPARISONS OF SNR (AFTER DENOISING) VALUES AT dBSNR  5  

Methods 
SNR (dB) (after denoising)  

Blocks Bumps Heavy sine Doppler Piece-Regular 

EMD-Soft 13.8133 13.8488 18.7782 15.8444 13.9588 

EMD-Hard 12.0748 12.7898 13.5555 13.2650 12.3659 

EMD-Custom 14.04899 14.62062 18.80859 16.27758 14.36802 

 
TABLE II 

COMPARISONS OF MSE (AFTER DENOISING) VALUES AT dBSNR  5  

Methods 
MSE  

Blocks Bumps Heavy sine Doppler Piece-Regular 

EMD-Soft 0.3664 0.1335 0.1261 0.0022 0.1288 

EMD-Hard 0.5468 0.1704 0.4198 0.0040 0.1859 

EMD-Custom 0.34709 0.11181 0.12524 0.00202 0. 117272 

 
TABLE III 

COMPARISONS OF SNR (AFTER DENOISING) VALUES AT dBSNR  10  

Methods 
SNR (dB)(after denoising)  

Blocks Bumps Heavy sine Doppler Piece-Regular 

EMD-Soft 16.8143 17.4557 23.0320 18.7871 17.6147 

EMD-Hard 16.0032 17.7700 17.9741 17.6755 16.6911 

EMD-Custom 17.2527 18.8086 23.4599 19.5136 18.1645 
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TABLE IV 
COMPARISONS OF MSE (AFTER DENOISING) VALUES AT dBSNR  10  

Methods 
MSE  

Blocks Bumps Heavy sine Doppler Piece-Regular 

EMD-Soft 0.1836 0.0582 0.0473 0.0011 0.0555 

EMD-Hard 0.2213 0.0541 0.1517 0.0014 0.0686 

EMD-Custom 0.1659 0.0426 0.0429 0.0009 0.0489 

 
TABLE V 

COMPARISONS OF MSE (AFTER DENOISING) VALUES AT dBSNR  15  

Methods 
SNR (dB) (after denoising)  

Blocks Bumps Heavy sine Doppler Piece-Regular ECG dBSNR 20  

EMD-Soft 20.1370 20.4058 26.4670 22.2368 21.6292 26.2561 

EMD-Hard 20.0450 22.2445 22.8530 22.8495 21.3182 27.2952 

EMD-Custom 20.72509 22.29713 26.34644 23.31444 22.41842 27.50995 

 
TABLE VI 

COMPARISONS OF MSE (AFTER DENOISING) VALUES AT dBSNR  15  

Methods 
MSE 

Blocks Bumps Heavy sine Doppler Piece-Regular 

EMD-Soft 0.0854 0.0295 0.0214 0.00051 0.0220 

EMD-Hard 0.0872 0.0193 0.0493 0.00044 0.0236 

EMD-Custom 0.07461 0.01909 0.02207 0.00040 0.01837 

 
V. CONCLUSION 

In this paper, we proposed a new signal denoising method 
based on EMD and the modified custom thresholding function 
to suppress noise in the signal and improve the output SNR. 
The proposed method was tested on real ECG signal and 
simulated signals (Doppler, blocks, bumps heavy sine, and 
piece-regular) corrupted by white Gaussian noise. Based on 
SNR and MSE, simulation results show the advantages of the 
proposed EMD-Custom denoising method. We showed that 
the new approach is useful for removing noise and can 
improve the denoised results of soft and hard thresholding 
significantly. 
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