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EML-Estimation of Multivariate t Copulas with
Heuristic Optimization

Jin Zhang and Wing Lon Ng

Abstract—In recent years, copulas have become very popular in
financial research and actuarial science as they are more flexible in
modelling the co-movements and relationships of risk factors as com-
pared to the conventional linear correlation coefficient by Pearson.
However, a precise estimation of the copula parameters is vital in
order to correctly capture the (possibly nonlinear) dependence struc-
ture and joint tail events. In this study, we employ two optimization
heuristics, namely Differential Evolution and Threshold Accepting to
tackle the parameter estimation of multivariate t distribution models
in the EML approach. Since the evolutionary optimizer does not rely
on gradient search, the EML approach can be applied to estimation of
more complicated copula models such as high-dimensional copulas.
Our experimental study shows that the proposed method provides
more robust and more accurate estimates as compared to the IFM
approach.

Keywords—Copula Models, Student t Copula, Parameter Infer-
ence, Differential Evolution, Threshold Accepting.

I. INTRODUCTION

NOWADAYS, copulas have been widely applied by market
practitioners to model the dependence structure of finan-

cial risk factors, such as equity and exchange rate returns.
The popularity of copulas is mainly due to their flexibility
as they can be used to model both the linear and non-linear
dependence structure of a multivariate distribution. The linear
correlation by Pearson is not only insufficient in describing the
dependence of risk factors when moving away from elliptical
distributions, but also inconsistent under nonlinear strictly
increasing transformations of risk factors (see McNeil et al.
[6]). Therefore, using copula-based dependence measures will
be more accurate in capturing the dependence structure than
calculating the linear correlation.

However, a precise estimation of parameters in copula
models is crucial to dependence modelling. In the literature,
several ways based on the statistical inference theory are
developed to estimate parametric and non-parametric copula
models (Joe [3]). These approaches can be mainly classified
into three types: (parametric) maximum likelihood estimation,
semi-parametric estimation and non-parametric methods. The
maximum likelihood estimations usually include the exact
maximum likelihood method (EML) and the inference for
margins method (IFM). The EML method could be compu-
tationally very intensive when using traditional optimization
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methods if the dimension of risk factors turns out to be high.
Furthermore, since the EML jointly estimates the marginal dis-
tribution parameters and the dependence structure (copula) pa-
rameters, traditional optimization approaches tend to converge
to local optima. Thus, Joe [3] proposed the IFM approach,
a computationally simpler approach that first estimates the
margin parameters and then the copula parameters. However,
the estimators from the IFM method do not hold with the
ones in EML in general. Due to this reason, the former set
of estimates are usually used as a starting guess for the latter,
leading a cumbersome procedure, i.e. a ‘two-step’ maximum
likelihood.

This study compares two evolutionary methods, namely
Differential Evolution (DE) and Threshold Accepting (TA)
in tackling the parameter estimation of multivariate t copula
models under the EML framework. The approach is a one-
step estimation procedure, and it does not require any starting
guess of the decision variables. It employs a derivative-free
optimization method to overcome the curse of dimensionality
problem. Therefore, the proposed approach is particularly suit-
able for the inference of large and complicated copula models
by using EML, whereas traditional optimization procedures
tend to stop at local optima in such cases. in particular, we
find that DE outperforms TA in terms of stability and accuracy
of estimates.

The structure of the paper is organized as follows: Section
2 introduces the copula model and the parameter inference
problem. Section 3 presents the optimization problem, and
the evolutionary methods which are used to solve the prob-
lem. Section 4 reports the experiment results and Section 5
concludes.

II. THE COPULA MODEL

Copulas have become an important tool in finance with
various applications, e.g., risk management, derivatives pric-
ing, portfolio management, etc. In fact, copulas were initially
introduced by Sklar [10]. Let H denote a joint distribution of
function with margins F1, ..., Fd, then there exists an unique
copula C

H(x1, ...xd) = C(F1(x1), ..., Fd(xd)), (1)

if F1, ..., Fd are continuous. The copula model interprets
multivariate distributions by coupling the marginal distribution
function Fx1(x1), ..., Fxd

(xd) with the dependence structure
C (Nelsen [8]). In other words, the joint distribution can be
expressed by combining the marginal distributions with the
dependence structure, yielding

C(u1, ..., ud) = H(F−1

1
(u1), ..., F

−1

d (ud)), (2)
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with u ∈ [0, 1]
d, and F−1

i (.) denoting the inverse of the
marginal distribution Fi(.). In this study, we consider the
general Student t distribution and Student t copula to model
the marginal distribution Fi(.) and the dependence structure
C(.), respectively.

Particularly in finance and risk management, the Student t
distribution has been used instead of the normal distribution,
because of its fat tail behavior, which can be applied to capture
financial extreme events (Bollerslev [1]). The current work
mainly focuses on the parameter estimation of multivariate t
distributions. The marginal distributions of a multivariate t dis-
tribution are univariate Student t distributions. The probability
density function f(.) of general Student t distributions can be
written as

f t
νm,μm,σm

(x) =

Γ(
νm+1

2
)

Γ(
νm

2
)

1√
νmπσ2

m(
1 +

1

νm

(x − μm)
2

σ2
m

)− νm+1
2

, (3)

where Γ(.) is the gamma function, νm denotes the marginal
degrees of freedom (DOF), μm and σm represent the location
and dispersion of the marginal distribution (see Meucci [7]).

According to Sklar [10], the t copula of the random vector
u can be expressed as

Ct
ν,ρ(u) = tdν,ρ(t

−1

ν (u1), ..., t
−1

ν (ud)), (4)

where ρi,j = Σi,j/
√

Σi,iΣj,j , with i, j ∈ 1, ..., d. tdν,ρ(.) de-
notes the distribution function H(.) of

√
ν/

√
S ·Z; and t−1

ν (.)
represents the inverse of the marginal t distribution function
F−1

i (.). The corresponding t-copula density c(u1, ..., ud) =

∂nC(u1,...,ud)

∂u1...∂ud
can be written as

ct
ν,ρ(u1, ...ud) =

1√|ρ|
Γ(

ν+d
2

)Γ(
ν
2
)
d−1

Γ(
ν+1

2
)
d

∏d
k=1

(1 +

y2
k

ν )

ν+1
2

(1 +
y′ρ−1y

ν )

ν+d
2

.

(5)
One should note that, if the DOF νm of the marginal distri-
bution of Eq. (3) is consistent with the DOF ν in the copula
function in Eq. (5), the multivariate distribution is referred to
as a multivariate t distribution (see Mcneil et al. [6]).

The complete copula model consists of marginal cumulative
distributions F (.) and a joint cumulative distribution H(.),
distribution parameters on the two levels are ideally estimated
jointly in the exact maximum likelihood (EML) method.
The log-likelihood function �m of the Student t marginal
distribution f(.) can be written as

�m
= −no · [ log(σj) + log(

√
νj) + log(

√
π)+

log

(
Γ

(νj

2

))
+ log

(
Γ

(
1 + νj

2

))
] (6)

−
(

νj + 1

2

)
·

no∑
i=1

log

(
1 +

(xj,i − μj)
2

σ2

j · νj

)
, (7)

where no is the observation number; and μj , σj , νj denote
the location, dispersion and degrees of freedom of the j-th
marginal distribution, respectively. The log-likelihood function

�C of the t copula density in Eq. (5) can be written as

�C
= no · [ − 1

2

· log(|ρ|) − 2 · log

(
Γ

(
ν + 1

2

))

+ log

(
Γ

(
ν + 2

2

))
+ log

(
Γ

(ν

2

))
]

+

d∑
j=1

no∑
i=1

ν + 1

2

· log

(
1 +

y2

j,i

ν

)

−ν + 2

2

·
no∑
i=1

log

[
1 +

1

ν
yi

′ · ρ−1 · yi

]
, (8)

where d denotes the dimension of the risk factors; yj,i rep-
resents the inverse transform of Student t with ν degrees of
freedom for the j-th risk factor’s observations after a strictly
increasing transform, i.e., the Student t cumulative distribution
function.

Since the EML method can be computationally burdensome
if the common Newton-Raphson algorithm is applied to opti-
mize the objective function, the literature suggests the infer-
ence for margins (IFM) approach as this two-step procedure
can obtain the estimates faster – but at the cost of higher
bias. Basically, the IMF approach estimates the parameters
of the marginal distributions Eq. (7) first. The variables xj,i

are transferred into yj,i by using the estimates, then the
inference of the copula parameters in Eq. (8) is performed.
IFM approach is a two-step procedure and it is implemented by
using the Newton-Raphson algorithm. However, the approach
cannot guarantee the parameter νj in Eq. (7) and the ν in
Eq. (8) being consistent. EML overcomes the barrier since it
estimates the marginal distributions and the copula jointly. The
objective function used in the EML approach is then written
as

� = −no ·
d∑

j=1

[ log(σj) + log(

√
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√
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·
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1

ν
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]
. (9)

III. THE OPTIMIZATION PROBLEM

The estimation of the parameters is based on the maximiza-
tion of an objective function, i.e. the log-likelihood function
from the copula density function. Ideally, the parameters of the
cumulative distribution function should be estimated jointly
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with parameters of the copula model. The fitness of the final
objective function is defined as the sum of log-likelihood
values of both the marginal and copula density functions
in Eq. (9). In the multivariate t copula model, the marginal
distributions and copula model have a same DoF ν. The fitness
value of the objective function O depends on μm, σ2

m, ρ and
ν. The optimization problem can be briefly described as:

max

μm,σm,ρ,ν
O = �

subject to

1 > ρ > −1, ν > 3. (10)

To estimate the copula model, we adopt a population based
evolutionary method to optimize parameters of copula models
while taking the marginal distribution and dependent structure
into account simultaneously.

A. Differential Evolution

Heuristic methods provide ways of tackling combinatorial
optimization problems. Differential Evolution (DE) which was
originally proposed by Storn and Price [11], is a population
based heuristic method for solving the optimization problems
with continuous space. The approach generates new solutions
by linear combination and cross-over based on current solu-
tions. The resulting solution would replace the current best
solution if the new solution has a higher fitness value. For
each current solution ıp, a new solution ıc is generated from
the following procedure: randomly selecting three different
members from the current population (p1 �= p2 �= p3 �= p);
linearly combining the solution vectors at probability π1, or
inheriting the original p-th solution otherwise. We use the ‘Dit-
ter’ and ‘Jitter’ version of the standard DE (see Price et al. [9]),
which considers adding normally distributed random numbers
to the weighting factor K, and the difference of two solution
vectors respectively. Vectors z1 and z2 represent the extra
noise in the algorithm; they contain random numbers being
zero with probability π2 and π3 respectively, or independently
follow the normal distributions N(0, d2

1
) and N(0, d2

2
). The

DE algorithm is described by the pseudo code in Algorithm
1. π1 is the cross-over probability. After the linear combination
and cross-over, DE updates the population. More specifically,
if the fitness value of ıc is higher than the one of ıp, the
solution ıp is replaced by ıc, and the updated ıp exists in the
current population; otherwise ıp survives.

The technical parameters of DE algorithm used in this study
are listed as follows. Population size and iteration number were
set at 50 and 500; the value of K was set at a value 0.5; and
the cross-over probability π1 was at 60%. The parameters used
for the extra noise were: π2 = 50%, π3 = 10%, d2

1
= 0.1

and d2

2
= 0.1. We use the dotted parameters to represent the

chromosomes of the population. Repair functions are used to
translate the chromosomes to the solutions which meet the
constraints:

ν = 3 + |ν̇| (11)

Algorithm 1 Differential Evolution.
1: randomly initialize population of vectors ıp , p= 1,...,P
2: while the halting criterion is not met do
3: for all current solutions ıp , p=1,...,P do
4: randomly pick three different solutions, i.e. p1 �= p2 �=

p3 �= p
5: ıc [i] ← ıp1 [i] + (K + z1[i])(ıp2 [i] − ıp3 [i] + z2[i]) with

probability π1, or ıc[i] ← ıp[i] otherwise
6: compute the fitness value of ıp , i.e. the sum of log-

likelihood value of the marginal and copula density func-
tions

7: end for
8: for the current solution ıp , p = 1,...,P do
9: if Fitness(ıc) > Fitness(ıp) then ıp ← ıc end if

10: end for
11: end while

Algorithm 2 Threshold Accepting.
1: Initialize threshold sequence Ti, with i = 1, ..., ns and
2: Randomly generate an initial solution ıc

3: for i = 1 to ns do
4: Choose ın ∈ N (ıc)
5: if O(ın) −O(ıc) < Ti, then
6: ıc ← ın

7: end if
8: end for

ρ =

{
exp

−0.15
|ρ̇| , if ρ̇ > 0

− exp
−0.15
|ρ̇| , if ρ̇ < 0

(12)

The idea of the above repair mechanism is proposed by
Maringer and Oyewumi [5], who apply a similar idea to
translate solutions from DE to valid asset weights for index
tracking problems.

B. Threshold Accepting

Dueck and Scheuer [2] introduced threshold accepting (TA)
which is a heuristics approach analog to simulated anneal-
ing (SA) (see Kirkpatrick et al. [4]). Winker [12] gave a
comprehensive introduction of TA and its applications in
economics. TA is a refined version of the standard local search
procedure, mainly it differs from the standard approaches in
its acceptance criterion. Given a minimization problem, let ıc

denote an initial element and ın represent a new element in
the neighborhood N (ıc

), TA will accept ın as a new current
solution if and only if the solution is better than ıc in terms
of objective function, i.e. O(ın

) − O(ın
) < T for some

preassigned non-negative threshold value T, and the threshold
T is decreased gradually and reaches the value of zero after a
given number of steps ns.

To generate a new solution in the neighborhood of ıc, we
add normally distributed randomness from N(0, d2

3
) to each

molecule in the chromosome of the ıc at a probability of π4,
otherwise the molecule of the new solution ın inherits the one
of ıc. The parameter d3 and π4 are assigned with values of 0.1
and 0.5. The sequence of threshold Fi, i = 1, ..., ns is decided
by using a data-driven approach, which is suggested by Winker
[12] as a standard approach in deciding the sequence. The
empirical distribution of the distance between a number of
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Fig. 1. Log-Likelihood values of DE and TA

randomly chosen solutions and their corresponding neighbor-
hood is computed, and the distance is defined as the absolute
difference in the values of the objective function which are
computed by using the solution and its neighborhood. The
empirical distance then is sorted in decreasing order, and the
i-th quantile of the sorted distance are use as the threshold
for the i-th step. The mapping functions described in the last
subsection are used to satisfy the constraints. The TA approach
is described by Algorithm 2.

IV. EXPERIMENTAL RESULTS

First, we compare the log-likelihood values and the esti-
mates of the copula model using the DE and the TA in the
optimisation procedure. We independently restart the two algo-
rithms 150 times to obtain the distributions of the fitness value
and the parameter estimates using a same data sample. The
fitness values i.e., the log-likelihood values defined in Eq. (9)
are provided in Figure 1. The figure shows that the DE yields
better and more stable fitness values than the TA. As Winker
[12] pointed out that the performance of TA highly depends
on (a) the construction of local structure, (b) the threshold
sequence. In order to have a successful implementation of TA,
the solution space of the specified problem should be explored
in finding a proper local structure and a suitable threshold
sequence. Regarding DE, the algorithm usually only requires
a fine tune of the parameters K and π1.

It has been shown that DE works better than TA for the
above problem. Therefore, we employ DE as the EML opti-
mizer in the following Monte-Carlo simulation experiments.
To assess the performance of the proposed EML estimation,
we first simulate a set of 200 × 2 random variables with
bivariate student t distribution at a total iteration number
of In = 5, 000. The true distribution parameters are set as
μ1 = 0, μ2 = 0, σ1 = 0.2548, σ2 = 0.2250, ρ = 0.43 and
ν = 6. After that, we estimate the parameters of the bivariate
t-copula with t margins by using the proposed approach and
a traditional approach respectively. Since the standard hill-
climbing algorithm such as the Newton-Raphson approach for
the EML method did not generate any results but only for the
IFM framework, we only compare the latter one with the DE

TABLE I
COMPARISON OF THE SAMPLE MOMENTS OF THE

BOOTSTRAPPED PARAMETERS

EML
θ True Value Mean(θ̂) St.dev.(θ̂) Skewness(θ̂) Kurtosis(θ̂)

μ1 0.0000 0.0000 0.0105 0.0390 2.9275
μ2 0.0000 0.0000 0.0092 0.0051 3.0494
σ1 0.2548 0.2551 0.0095 0.0080 3.0637
σ2 0.2252 0.2255 0.0086 0.0863 3.0170
ρ 0.4300 0.4374 0.0330 -0.0950 3.0309
ν 6.0000 6.2589 1.1123 1.2754 6.2565

IMF
θ True Value Mean(θ̂) St.dev.(θ̂) Skewness(θ̂) Kurtosis(θ̂)

μ1 0.0000 0.0000 0.0106 0.0397 2.9311
μ2 0.0000 0.0000 0.0093 0.0103 3.0495
σ1 0.2548 0.2554 0.0111 0.0453 3.0506
σ2 0.2252 0.2257 0.0100 0.0966 3.0502
ρ 0.4300 0.4375 0.0336 -0.0620 3.0299
ν 6.0000 6.6798 2.7531 4.8531 59.7094
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Fig. 2. Kernel densities of the estimated copula parameters from the 
EML and IFM

procedure applied on EML (see also Joe (1997)). Table I shows
the numerical results with the standard descriptive statistics
of the estimated parameters in the N bootstrap samples. As
expected, the EML estimators, obtained by maximizing the
log-likelihood function with the DE, are often (a) closer to
the true values, (b) less biased, (c) less skewed and (d) less
kurtotic as compared to the IFM alternatives.

Figure 2 compares the kernel densities of the estimated
distribution parameters for both estimation procedures. As dis-
cernible, the differences between the distribution of estimators
for μ1, μ2 (top panels) and ρ (bottom left panel) are negligible.
More interestingly, the middle panels reveal that the dispersion
parameters σ1 and σ2 can be more accurately and more
efficiently estimated with the EML approach as their kernel
densities are higher in the centered region and lower in the tail
regions. Finally, the bottom right panel shows that the estimate
for the degree of freedom ν that controls the probability
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of tail events in the distribution is even biased in the IFM
method as the peak of its kernel density is not localized at
the true parameters position (as indicated by the blue line). In
total, it can be seen that the parameters responsible centered
moments of the distribution, i.e. σ1, σ2 and ν can be better
estimated with the EML approach. These results are indeed
essential as they reveal that the IFM approach often preferred
in the financial literature is more likely to provide less reliable
estimators of the underlying joint distribution and, hence,
less able to correctly capture the dependence structure and,
more importantly, the tail dependence of risk factors (i.e., the
extreme losses).

V. CONCLUSION

This paper suggests implementing an evolutionary algorithm
in the exact maximum likelihood estimation of multivariate
copula models as standard hill-climbing procedure. Usually,
the standard Newton-Raphson algorithm fails to optimize the
objective function when the number of dimensions turns out
to be high, while a derivative-free optimizer can overcome
this problem. We employ two evolutionary approaches, namely
Differential Evolution and Threshold Accepting in the EML
approach, and we find that the former works better. Through
a simple Monte-Carlo simulation study, we show that the pro-
posed methodology already provide reasonably good results in
a straightforward 2-dimensional setting with a bivariate Stu-
dent t-copula. As expected, the estimates obtained by the EML
approach enhanced with the heuristics approaches are often
closer to the true values as compared to the IFM alternatives.
Furthermore, the Differential Evolution is competent for the
EML inference of more complicated copula models than the
bivariate Student t copula studied.
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