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Abstract—This paper covers application of an elitist self-

adaptive step-size search (ESASS) to optimum design of steel 
skeletal structures. In the ESASS two approaches are considered for 
improving the convergence accuracy as well as the computational 
efficiency of the original technique namely the so called self-
adaptive step-size search (SASS). Firstly, an additional randomness 
is incorporated into the sampling step of the technique to preserve 
exploration capability of the algorithm during the optimization. 
Moreover, an adaptive sampling scheme is introduced to improve the 
quality of final solutions. Secondly, computational efficiency of the 
technique is accelerated via avoiding unnecessary analyses during the 
optimization process using an upper bound strategy. The numerical 
results demonstrate the usefulness of the ESASS in the sizing 
optimization problems of steel truss and frame structures. 
 

Keywords—Structural design optimization, optimal sizing, 
metaheuristics, self-adaptive step-size search, steel trusses, steel 
frames. 

I. INTRODUCTION 

AILY life is full of instances which need decision 
making about the best possible solution. By using the 

shortest path to reach the destination, shopping with a certain 
budget, or ordering our daily tasks, implicitly we try to find an 
optimum solution. Generally, time and cost limitations are the 
two common limitations in real life optimization instances. 
Similar to frequent daily problems, the field of engineering 
design includes a wide range of optimization problems as 
well. Even, it can be mentioned that engineering design 
without optimization is indeed not meaningful [1]. In 
particular the optimum design of a structural system is an 
attempt to find the best arrangement of solution variables that 
yields a minimum weight or cost design. Furthermore, for 
practical aspects the final design should satisfy a set of design 
constraints imposed with respect to a standard code. Basically, 
the main categories of traditional structural optimization 
techniques are mathematical programming [2] and optimality 
criteria [3], [4] approaches. The well known shortcomings of 
traditional optimization methods are that these techniques are 
gradient-based and therefore typically work on the basis of 
continuous solution variables. Furthermore, computing the 
gradients of highly nonlinear objective functions of practical 
instances becomes another difficulty when dealing with these 
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techniques. The most recent category of structural 
optimization techniques is referred to as non-traditional 
stochastic search methods or metaheuristics. These algorithms, 
such as genetic algorithms, particle swarm optimization, ant 
colony optimization, etc., are basically nature inspired 
approaches, which borrow their working principles from 
natural phenomena [5]. Different from traditional optimization 
techniques, metaheuristic algorithms do not perform any 
gradient based search and are able to handle both discrete and 
continuous solution variables. In addition, the stochastic 
nature of metaheuristics makes it more probable to find a near 
optimum solution even for complicated practical optimization 
instances. Since the optimization approaches based on 
metaheuristics are robust and successful in locating the 
optimal solutions, these algorithms can efficiently be 
employed for solving practical structural optimization 
problems. The state-of-the-art reviews of metaheuristics as 
well as their applications in structural design optimization can 
be found in [6]-[8]. 

Although meta-heuristic algorithms are generally conceived 
to be successful in locating promising solutions for 
challenging engineering optimization problems, the slow rate 
of convergence towards the optimum and the need for a high 
number of structural analyses are known as the main 
shortcomings of these techniques in practical structural design 
optimization. Mostly response computations of designs 
sampled during a search process mostly occupies 85-95% 
workload of a metaheuristic technique [9], and therefore large 
number of structural analyses substantially increases the total 
computing effort. One solution to this is to reduce the total 
computational time by taking advantage of high performance 
computing methods, such as parallel or distributed computing 
techniques [9]. The idea in this approach is to distribute the 
total workload of the optimization algorithm amongst 
multiprocessors of a single computer or within a cluster of 
computers connected to each other via local area network. 
Another approach, which is more straightforward and easier to 
apply, is to develop efficient strategies for diminishing the 
number of structural analyses required in the optimization 
process. The latter, can be performed through developing 
efficient optimization techniques capable of locating 
reasonable solutions using less computational effort. Recently, 
an upper bound strategy (UBS) is proposed in Kazemzadeh 
Azad et al. [10], where unnecessary structural analyses are 
avoided during the course of optimization through a simple 
and efficient mechanism. The key issue in the UBS is to 
identify those candidate solutions which have no chance to 
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improve the search during the iterations of the optimum 
design process. After identifying those non-improving 
solutions, they are directly excluded from the design 
population without any structural analysis performed, 
resulting in a significant saving in computational effort [10]. 

Self-adaptive step-size search (SASS) algorithm is a 
recently proposed optimization technique based on a self-
adaptive hill-climbing strategy [11]. In addition to its ability 
for tackling practical optimization problems, the facts that it 
has a simple algorithmic structure and needs relatively a small 
number of parameters for implementation are amongst the 
advantageous features of this technique. In Nolle [12] the 
SASS algorithm is successfully employed to find the optimum 
profiles for a simulated rolling mill. Nolle [13] also applied 
this algorithm to automated Langmuir probe tuning problem 
and reported numerical results indicating the favorable 
application of the technique. Later, Nolle and Bland [14] 
demonstrated the promising performance of the SASS in 
automatic optimization of standard engineering design 
problems. 

This study covers application of a recently developed 
ESASS algorithm [15] to discrete sizing of steel truss and 
frame structures. In the ESASS two approaches are considered 
for improving the convergence accuracy as well as the 
computational efficiency of the original technique. Firstly, an 
additional randomness is incorporated into the sampling step 
of the technique to preserve exploration capability of the 
algorithm during the optimization. Moreover, an adaptive 
sampling scheme is introduced to improve the quality of final 
solutions. Secondly, computational efficiency of the technique 
is accelerated via avoiding unnecessary analyses during the 
optimization process using an upper bound strategy. The 
numerical results demonstrate the usefulness of the ESASS in 
the sizing optimization problems of steel truss and frame 
structures. 

II. OPTIMUM DESIGN OF STEEL SKELETAL STRUCTURES 

For a steel structure composed of mN  structural members 

collected in dN  member groups, the sizing optimization 

problem can be formulated as follows.  
The objective is to find a vector of integer values I given in 

(1) representing the sequence numbers of steel sections 
assigned to dN  member groups: 
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In (1)-(3), iA  and i  
are the length and unit weight of the 

steel section adopted for member group i, respectively, tN  is 

the total number of members in group i, jL  is the length of 

the member j which belongs to group i, and )(X is the 

penalty function employed for handling the constraints. The 
optimization constraints consist of the limitations imposed on 
overall structural response and behavior of individual 
members which are addressed for each example in Section V.  

III. THE SASS OPTIMIZATION ALGORITHM 

Section III covers the optimum design procedure based on 
the SASS algorithm [14]. The algorithm has a relatively 
simple outline, which consists of the following steps: 
Step 1. Initial population: Form an initial population by 

spreading m solution candidates over the design space. 
Each solution candidate iX  is referred to as a particle 

),...,1( mii P in the SASS algorithm and is considered 

as a vector of n design variables, i.e. 
),...,,( 21 iniii vvvP . 

Step 2. Evaluation of the initial population: Calculate the 
objective function value of each particle through (2). 
The fitness value of each particle is computed by either 
inverting its objective function value, or subtracting it 
from a constant number chosen large enough to yield 
always a positive value for all particles.  

Step 3. Selecting a particle for improvement: Select a particle 
for improvement in an optimization cycle. In this 
process each particle ),...,1( mii P is selected once 

according to its sequence number in the population, and 
the improvement of this particle is performed as 
discussed in the following steps. 

Step 4. Defining a maximum step size vector ( imaxS ): For each 

particle iP  selected in the previous step, choose two 

different particles kP  and lP  randomly from the 

population to define the neighborhood of the particle 

iP  based on a maximum step size vector imaxS , 

 
  ),...,,( 1 maxinmaxi2imaximax SSSS                  (4)  

 

     ljkjij vvS max       for    j=1, 2, . . ., n              (5)  

 
where, each component of imaxS  is equal to the absolute value 

of the difference between the corresponding design variables 
in the  particles kP  and lP . 

Step 5. Sampling: Sample a new particle iP  in the 

neighborhood of the selected particle iP  based on imaxS  

using (6) and (7), 

 

    ijijij stepvv                       (6) 
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 ijijij SSstep maxmax ,   for    j=1, 2, . . ., n             (7) 

 
where ijv  and ijv  are the j-th design variable in the particles 

iP  and iP  respectively, and ijstep  is any number randomly 

chosen between the range  ijij SS maxmax , using a uniform 

distribution. 
Step 6. Evaluation of the sampled particle: Calculate the fitness 

value of the newly sampled particle iP . 

Step 7. Updating: Compare the sampled particle iP  with the 

original particle iP  based on their fitness values. If 

)()( ii ff PP   then iP  is updated and replaced by iP , 

otherwise iP  is retained. 

Step 8. Termination: Go to Step 3 until a stopping criterion is 
satisfied, which can be imposed as a maximum number 
of iterations or no improvement of the best design over 
a certain number of iterations. It should be noted that 
one cycle in SASS is composed of m iterations. 

IV. THE ESASS OPTIMIZATION ALGORITHM 

A reformulation of the SASS algorithm is proposed in [15] 
to improve the efficiency of the algorithm in structural design 
optimization problems. The resulting enhancement of the 
technique is referred to as elitist self-adaptive step-size search 
(ESASS) algorithm. The ESASS algorithm exhibits some 
superiority with respect to its standard variant in terms of both 
convergence accuracy and computational efficiency. In the 
following the enhancements in the ESASS algorithm are 
described in details. 

In the SASS algorithm typically the components of step size 
vector imaxS  are large in the initial cycles due to a random 

generation of the initial population, and they tend to decrease 
adaptively with the convergence of the population as the 
search goes on. This self-adaptive nature of the algorithm is 
intended to provide a suitable search mechanism by sampling 
new particles in a restricted, yet more favorable region of the 
design space in the following cycles. However, when the 
performance of the algorithm is investigated through 
numerical examples, it is observed that the imaxS  values tend 

to become very small or even zero after a certain number of 
cycles, resulting in negligible or sometimes no changes in the 
generated particles. It follows that exploration ability of the 
algorithm vanishes in time, leading to degenerated or 
sometimes totally disabled search process by the SASS 
algorithm. As a remedy to this problem, (6) is somewhat 
modified in the proposed ESASS algorithm. An additional 
term ( ijrand ) based on a standard normal distribution, )1,0(N , 

with a mean of zero and standard deviation of 1, is used in 
each iteration with a probability of pR as follows: 

 
            ijijijij randstepvv                           (8) 
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where iju  is a uniform random number selected between 0 

and 1. The rationale behind (8) and (9) is to facilitate 
stochastic changes in the generation of new particles to keep 
alive the exploration capability of the algorithm especially 
when the imaxS  values are decreased to unnecessarily low 

values. However, not all components of the particle are 
subjected to stochastic change; instead this is controlled by the 
probability pR . In addition, the use of a normally distributed 

random number in this formulation ensures that the small 
perturbations occur more often than the large ones. 

On the other hand, some recently developed metaheuristic 
optimization algorithms based on elitist strategies have been 
found to be very efficient in locating optimum or near-
optimum solutions while tackling complicated design 
optimization problems [16]-[18]. For instance, two enhanced 
metaheuristic algorithms [17], [18] that are specifically 
developed by the authors for handling sizing optimization 
problems work fundamentally on the basis of an elitist 
strategy where the new candidate solutions are generated in 
the vicinity of the current best design. 

An attempt is made to utilize an elitist strategy in the 
ESASS algorithm where the sampling of new particles (Step 
5) is encouraged in the neighborhood of the best-so-far 
particle in accordance with (10), 
 

                      ijij
best
ijij randstepvv                       (10) 

 

where best
ijv  refers to the j-th component of the best particle 

bestP  found so far in the optimization process.  

It should be noted that (8) and (10) offer two competitive 
formulations to be used in place of (6) for sampling new 
particles in searching the design space. Apparently, a more 
explorative search is provided with (8), whereas (10) 
motivates a more exploitative search by benefitting from 
previously visited best solution.  

To combine these two useful search features in an efficient 
manner, an adaptive sampling scheme with the following 
pseudo-code is developed in the ESASS algorithm: 
 
  if ( si Ru  ) then 

‐ selectedP = iP  

‐ Sample new particle iP  using (8) 

    else 
‐ selectedP = bestP  

‐ Sample new particle iP  using (10)  

where 
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In the proposed adaptive sampling scheme a new particle 

iP  is generated by applying either one of these two sampling 

equations (8) and (10) probabilistically. Here the sampling 
probability parameter  1,0sR  controls the sampling scheme 

to be implemented when generating a new particle. For each 
particle, a uniform random number iu  is generated anew 

between 0 and 1, and at times when si Ru  , the new particle 

is sampled using (8), otherwise it is generated using (10). It 
follows that the probability of sampling a new particle with 
(8) and (10) is sR  and sR1 , respectively. The sR  parameter 

is initially set to 0.5 to give an equal chance to either sampling 
scheme in the beginning. However, when iteration of a cycle 
is completed (i.e. when m number of particles are sampled and 
evaluated in a cycle) sR  is updated adaptively using (11), and 

this way the search is biased towards the sampling scheme that 
exhibits a better performance at the previous iteration. 

In (11), t
sR  and 1t

sR  represent the sampling probability 

parameters at cycles t and t+1, respectively. Accordingly, if 
the best design bestP  is improved by a particle sampled using 

(8) at the previous iteration, sR  is increased by 0.01; otherwise 

if bestP  is improved by a particle sampled using (10), then sR  

is lowered by 0.01. No update of sR  is carried out if bestP  is 

not improved at the previous iteration.  
On the other hand the computational efficiency of the 

ESASS algorithm is accelerated via the recently developed 
UBS method [10]. In this approach, basically the penalized 
weight of a current solution is considered as an upper bound 
limit for the net weight of a newly generated solution. 
Accordingly, a new solution with a net weight greater than 
this limit is excluded from the structural analysis stage. This 
strategy is used in the ESASS algorithm as follows. Here, 
after a new particle iP   is sampled in Step 5 in the vicinity of 

a selected particle iP  or bestP , first the net weight of iP , 

i.e. )( iW P , is calculated only; not the penalized weight. This 

computation is straightforward and can be done with a trivial 
computational effort. If iP  has a net weight smaller than or 

equal to the penalized weight of the selected particle 
)( selectedf P , the structural analysis of the new particle is 

processed and its penalized weight is computed. In the 
opposite case, i.e. )( iW P > )( selectedf P , however, the upper 

bound rule is activated and iP  is automatically excluded from 

the structural analysis phase required for response 
computations in Step 6, since such a candidate is unlikely to 
improve the selected design. 

V. NUMERICAL EXAMPLES 

Section V presents application of the ESASS algorithm to 
sizing optimization of steel skeletal structures. The design 
examples covered here include a 135-member steel frame and 
a 200-bar planar truss. The optimum solutions found for these 
structures with the ESASS algorithm are compared to those 
achieved using other contemporary metaheuristic algorithms. 
It is worth mentioning that a population size of 50 is used for 
the ESASS algorithm.   

A. 135-Member Steel Frame 

The first optimization instance is a 3-story steel frame 
depicted in Fig. 1, composed of 135 members including 66 
beam, 45 column and 24 bracing elements. The stability of 
structure is provided through moment-resisting connections as 
well as inverted V-type bracing systems along the x direction. 
For practical fabrication requirements the 135 members of the 
frame are collected under 10 member groups. Here, the 
columns are grouped into four sizing variables in a plan level 
as corner, inner, side x-z and side y-z columns, and they are 
assumed to have the same cross-section over the three stories 
of the frame. On the other hand, all the beams in each story 
are grouped into one sizing variable, resulting in three beam-
sizing design variables. Similarly, all the bracings in each 
story are grouped into one sizing variable, resulting in three 
bracing-sizing design variables for the frame. Further member 
grouping details for this example can be found in [10].  

 For design purpose, the frame is subjected to the 
following 10 load combinations to ASCE 7-98 [19]: 
 
(1) 1.4D 
(2) 1.2D + 1.6L 
(3) 1.2D + 1.0Ex + 0.5L 
(4) 1.2D + 1.0Eex + 0.5L 
(5) 1.2D + 1.0Ey + 0.5L 
(6) 1.2D + 1.0Eey + 0.5L 
(7) 0.9D + 1.0Ex 

(8) 0.9D + 1.0Eex 

(9) 0.9D + 1.0Ey 

(10) 0.9D + 1.0Eey 

  
where D and L denote the dead and live loads, respectively; Ex 
and Ey are the earthquake loads applied to the center of mass 
in x and y directions, respectively; and Eex and Eey are the 
earthquake loads applied considering the effect of accidental 
eccentricity of the center of mass in x and y directions, 
respectively. Based on ASCE 7-98 [19] the amount of 
eccentricity is set to 5% of the dimension of the structure 
perpendicular to the direction of the applied earthquake load. 

The live loads acting on the floor and roof beams are 12 
and 7 kN/m, respectively. The dead loads consist of the self-
weight of the structure in addition to the uniformly distributed 
loads of 20 and 15 kN/m applied on floor and roof beams, 
respectively.  

The earthquake loads, are calculated based on the 
equivalent lateral force procedure outlined in ASCE 7-98 [19]. 
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Here, the resulting seismic base shear (V) is taken as V = 
0.15Ws where Ws is the total dead load of the building. The 
computed base shear is distributed to each floor based on the 
following equation:  
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where xF  is the induced lateral seismic force at level x; w is 

portion of the total gravity load assigned to the related level 
(i.e. level i or x); and h is the height from base to the related 
level. The parameter k is determined based on the structure 
period. It is equal to 1 for structures with a period of 0.5 sec or 
less; and 2 for structures with a period of 2.5 sec or more. For 
structures with a period in range of 0.5 to 2.5 sec, k is 
calculated through linear interpolation [19]. It is worth 
mentioning that the period of the structure is calculated using 
the following equation given in ASCE 7-98  [19]. 
 
 

                               4/3
nT hCT                                    (13) 

    
where TC  is taken as 0.0853 and nh  is the height of the 

building; namely 12 m for this example. Hence, the period of 
the structure, T, is 0.55 sec. Based on the period obtained the 
value of parameter k in (12) is taken as 1.025 for this example. 
It should be noticed that since the self-weight of the structure 
changes during the course of optimization, the dead and 
earthquake loads are not stationary. 

The beam elements are continuously braced along their 
lengths by the floor system; and columns and bracings are 
assumed to be unbraced along their lengths. The effective 
length factor, K, is taken as 1 for all beams and bracings. The 
K factor is conservatively taken as 1.0 for buckling of 
columns about their minor (weak) direction, since the frame is 
assumed to be non-swaying in that direction owing to inverted 
V-type bracing systems. However, for buckling of columns 
about their major direction the K factor is calculated [10]. 

The maximum lateral displacement of the top story is 
limited to 0.03 m and the upper limit of interstory drift is 
taken as h/400, where h is the story height. The interstory 
drifts are calculated based on the displacement of center of 
mass of each story. The maximum lateral displacement of the 
top story is calculated with respect to the maximum 
displacements of the ends of the structure. Here, horizontal 
displacements of all joints of each story are constrained to 
each other based on a rigid diaphragm assumption.  

Discrete sizing of the frame is previously carried out in [10] 
via some contemporary metaheuristics, i.e. the upper bound 
strategy (UBS) integrated big bang-big crunch algorithm 
(UBB-BC), as well as its two enhanced variants i.e. UBS 
integrated modified and exponential big bang-big crunch 
algorithms (UMBB-BC and UEBB-BC). Moreover, this 
instance is also solved in [20] using a UBS integrated particle 

swarm optimization algorithm (UPSO). 
Table I presents a comparison of optimum solutions located 

using different algorithms. As can be seen from this table, the 
ESASS yields a design weight of 44.33 ton for this example. 
Other solutions obtained are 38.91 ton by UEBBBC, 45.67 
ton by UMBB-BC, 47.3 ton by UBB-BC, and 55.66 ton by 
UPSO. These design weights are obtained using 1542 by 
ESASS, 1235 analyses by UEBBBC, 1794 analyses by 
UMBB-BC, 880 analyses by UBB-BC, and 1574 analyses by 
UPSO. It can be observed that the ESASS algorithm shows a 
promising performance which is comparable to the 
aforementioned contemporary enhanced optimization 
algorithms both in terms of solution quality as well as 
computational efficiency. Furthermore, the ESASS 
optimization algorithm needs few parameters for 
implementation. 
 

 

Fig. 1 135-Member Steel Frame 
 

TABLE I 
COMPARISON OF RESULTS FOR 135-MEMBER STEEL FRAME	

Sizing variables UPSO UBB-BC UMBB-BC UEBB-BC ESASS

1 W8X28 W10X39 W30X90 W21X62 W8X28

2 W33X118 W27X84 W14X48 W14X48 W36X160

3 W40X167 W40X149 W40X215 W36X150 W18X60

4 W14X53 W18X65 W27X84 W21X68 W14X53

5 W14X30 W21X44 W14X34 W18X40 W14X22

6 W24X55 W16X40 W12X35 W18X35 W16X31

7 W16X26 W10X22 W18X35 W16X26 W18X40

8 W14X30 W27X84 W21X44 W8X24 W8X24

9 W40X149 W16X26 W10X22 W16X26 W6X15

10 W27X84 W21X44 W6X15 W6X15 W16X50

Weight (ton) 55.66 47.3 45.67 38.91 44.33

Analyses 1574 880 1794 1235 1542

B. 200-Bar Truss Structure 

Discrete sizing of the 200-bar truss structure shown in Fig. 
2 is considered as the second design optimization example. 
The density of the material is 0.283 lb/in.3 (7833.41 kg/m3) 
and the modulus of elasticity is 30,000 ksi (20,6842.8 MPa). 
The members are only subjected to the stress constraints with 
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limits of  10 ksi (68.948 MPa). Here, the structure is 
subjected to three independent loading conditions:(i) 1.0 kip 
acting in the positive x direction at nodes 1, 6, 15, 20, 29, 34, 
43, 48, 57, 62, 71, (ii) 10 kips acting in the negative y 
direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 
19, 20, 22, 24, 26, . . . , 71, 72, 73, 74, and 75, (iii) Conditions 
1 and 2 acting together. 

Since the members of the truss are linked into 29 groups, 
there are totally 29 sizing design variables. This design 
optimization problem is formerly solved by GA in [21] using 
discrete design variables taken from the list S = [0.1, 0.347, 
0.44, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 
2.697, 2.8, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 
8.525, 9.3, 10.85, 13.33, 14.29, 17.17, 19.18, 23.68, 28.08, 
33.7] (in.2). For the sake of conformity, the same list of 
discrete sections is employed in this study for sizing the truss 
members. 

 

 

Fig. 2 200-Bar Truss (a1 = 240 in., a2 = 144 in., a3 = 360 in.) 
 

Discrete sizing of the 200-bar truss structure is performed 
using the ESASS algorithm and the optimum design found is 
presented in Table II. For comparison purpose the results for 
this example using the ARCGA [22] and MABC [23] 
algorithms are also presented in Table II. It can be seen from 
Table II that the ESASS obtains a design weight of 28075.488 
lb which is lighter than the design weights obtained by the 
other methods. Moreover, the number of structural analyses 

performed using the ESASS algorithm is only 11156, which is 
significantly less than those of the GA (i.e. 51360), ARCGA 
(i.e. 25000), and MABC (i.e. 40000) algorithms. The 
optimization history showing the variation of the best 
penalized weight during the cycles of the ESASS algorithm is 
illustrated in Fig. 3. 
 

TABLE II 
OPTIMAL CROSS SECTIONAL AREAS (IN.2) FOR THE 200-BAR TRUSS 

STRUCTURE 

Sizing variables GA [21] ARCGA  MABC ESASS

1 0.347 0.1 0.1 0.1

2 1.081 1.081 1.333 0.954

3 0.1 0.1 0.1 0.1

4 0.1 0.1 0.1 0.1

5 2.142 2.142 2.697 2.142

6 0.347 0.347 0.347 0.347

7 0.1 0.1 0.1 0.1

8 3.565 3.131 3.131 3.131

9 0.347 0.1 0.1 0.1

10 4.805 4.805 4.805 4.805

11 0.44 0.347 0.44 0.347

12 0.44 0.1 0.539 0.1

13 5.952 5.952 5.952 5.952

14 0.347 0.1 0.1 0.1

15 6.572 6.572 6.572 6.572

16 0.954 0.539 1.081 0.44

17 0.347 1.081 0.347 0.539

18 8.525 7.192 8.525 7.192

19 0.1 0.539 0.1 0.44

20 9.3 8.525 9.3 8.525

21 0.954 1.333 0.954 0.954

22 1.764 1.081 1.764 1.174

23 13.33 10.85 13.33 10.85

24 0.347 0.1 0.44 0.44

25 13.33 13.33 13.33 10.85

26 2.142 1.488 2.142 1.764

27 4.805 5.952 3.813 8.525

28 9.3 13.33 8.525 13.33

29 17.17 14.29 19.18 13.33

Weight (lb) 28544.014 28347.594 28366.365 28075.488

Analyses 51360 25000 40000 11156

VI. CONCLUSION 

In this paper, application of the recently developed ESASS 
algorithm to optimum design of steel skeletal structures is 
presented. Basically, in the ESASS two strategies are 
considered for improving the convergence accuracy as well as 
the computational efficiency of the original technique. On the 
one hand, an additional randomness is incorporated into the 
sampling step of the technique to preserve exploration 
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capability of the algorithm during the optimization. On the 
other hand, an adaptive sampling scheme is introduced to 
improve the quality of final solutions. Furthermore, as a result 
of integrating the UBS with the ESASS algorithm the total 
number of required structural analyses is reduced. The 
numerical investigations using steel truss and frame structures 
indicate a promising performance of the ESASS algorithm 
with an acceptable level of comparability to the contemporary 
enhanced optimization algorithms both in terms of solution 
quality as well as computational efficiency.  
 

 

Fig. 3 Optimization History of 200-Bar Truss Using the ESASS  
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