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Abstract—Electrophoretic motion of a liquid droplet within an 
uncharged cylindrical pore is investigated theoretically in this study. It 
is found that the boundary effect in terms of the reduction of droplet 
mobility (droplet velocity per unit strength of the applied electric field) 
is very significant when the double layer surrounding the droplet is 
thick, and diminishes as it gets very thin. Moreover, the viscosity ratio 
of the ambient fluid to the internal one, σ, is a crucial factor in 
determining its electrophoretic behavior. The boundary effect is less 
significant as the viscosity ratio gets high. Up to 70% mobility 
reduction is observed when this ratio is low (σ = 0.01), whereas only 
40% reduction when it is high (σ = 100). The results of this study can 
be utilized in various fields of biotechnology, such as a biosensor or a 
lab-on-a-chip device. 
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I. INTRODUCTION 

ICRO-/NANOFLUDICS is a rapidly developing 
technology that involves fluid handling in devices 

containing channels in the micro-/nanometer size regime. This 
miniaturization offers many advantages including the ability to 
handle nanoliters of fluid and to provide fast response times 
[1-3]. In the past decade, with the fast development of micro- 
and nanotechnology, research can be performed in very 
controllable and direct ways. Ideally, micro-/nano- technology 
can realize each process, such as sampling, sample 
pretreatment, reaction, separation, detection and analysis in an 
analytical system on one integrated microdevice. Integrated 
systems of micro-/nanofluidic channels combined with pumps, 
valves, and detectors are known as Micro-total-analysis-system 
(μTAS) [4] or Lab-on-a-Chip (LOC) [5].  

Generally, the fluids of interest in chemistry and 
biotechnology are rarely simple single-phase liquids. Complex 
fluidic systems, such as emulsions, play a very important role in 
drug delivery, food science, oil and dairy industries, and 
therefore require detailed study. When different phases are 
injected as adjacent streams in one channel, one phase often 
preferentially wets the boundaries and encapsulates the second 
fluid as discrete droplets due to the high interfacial forces on 
microscales [6]. Droplet-based multiphase flow offer 
controlled mini-volumes of droplets. These tiny droplets are 
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almost ideal chemical reactors characterized by fast thermal 
transfer, efficient mixing, narrow residence time and an 
absence of hydrodynamic dispersion. These flows have been 
therefore utilized in emulsification and encapsulation [7], 
synthesis [8], mixing [9], and bioassay [10], and so forth. 
Furthermore, in a droplet-based multiphase flow, droplets are 
separated from channel walls by a thin layer of another 
immiscible (carrier) fluid, therefore the internal compositions 
in droplets can not disperse across the boundary and can be 
cleanly transported without contacting the channel walls [11]. 
This supplies us with more flexibility to apply each droplet as a 
separate microreactor. 

Flow in micro-/nanochannels can be driven not only by 
external pressure or internal forces, but also by an electrical, 
magnetic, thermal, photic or phonic field. The movement of a 
charged particle relative to the surrounding fluid as a response 
to the applied electric field, for example, is termed 
electrophoresis, which has great potentials in analytical 
chemistry and a separation method in industrial processes [12]. 
As for the electrophoresis of droplets in particular, Booth [13] 
first investigated the electrophoretic behavior of a mercury 
drop. Later on, Levine and O’Brien [14] examined thoroughly 
the motion of a mercury drop and found that it can be 
influenced significantly by an externally applied static electric 
field. Baygents and Saville [15]-[16] analyzed the 
electrophoretic mobility as a function of the zeta potential for 
conducting and non-conducting drops. Ohshima [17] extended 
the study to concentrated dispersion of charged spherical 
mercury drops and derived a formula for it. It is found that if the 
surface potential of a mercury drop is sufficiently high its 
electrophoretic behavior is the same as that of the 
corresponding rigid particle, the so-called solidification 
phenomenon of a liquid entity. Recently, Lee et al. [18] 
analyzed the electrophoresis of a non-rigid particle in a 
spherical cavity, and later extended to the case where the 
surface of a drop is of charge-regulated nature, a more general 
condition which arises from the dissociation of functional 
groups [19]. In general, because the particle-dispersion medium 
interface is not non-slip, the electrophoretic mobility of a 
non-rigid particle is larger than that of the corresponding rigid 
particle.  

Meanwhile, the presence of a boundary plays a key role in 
many applications of electrophoresis as well. In the field of 
corresponding theoretical analysis of a charged rigid particle in 
a cylindrical channel, Keh and Anderson [20] studied the 
electrophoresis of a charged rigid particle within an uncharged 
wall under the assumption of very thin double layer. Anderson 
and Ennis [21] studied the effect of finite double layer 
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thickness, but the zeta potential had to be low to make possible 
the theoretical treatment there. Shugai and Carnie [22] 
investigated the problem again with the numerical method 
proposed by Teubner [23]. No restriction of double layer 
thickness was imposed. Moreover, the double layer of the 
particle was allowed to touch the cylindrical boundary. Later, 
Hsu et al. [24] considered the electrophoresis of a soft particle 
and a charge-regulated soft particle respectively along the 
centerline of a cylindrical pore, assume low surface potential at 
the inner hard core. They found that an uncharged wall would 
retard the particle motion as a result of the viscous drag. 

The presence of surfactant or surface-active substances may 
lead to a significant impact on the motion of a liquid droplet. 
Usually, a tiny surfactant concentration, which is always 
present in tap water, natural water, and electrolyte samples, 
affects the rheology of fluid interfaces, for example, the surface 
viscosity and the surface tension. However, the incorporation 
of a general consideration of surfactant effect proves to be a 
formidable task for the current study. In the case of ultrapure 
water and ultrapure salts, the droplet surface is mobile, and the 
so-called Rybczynski-Hadamard theory [25] in hydrodynamics 
is applicable in this study. 

In this study, the electrophoretic motion of a liquid droplet 
within an uncharged cylindrical pore is considered. The 
external electric field is applied along the axis of the pore and 
the droplet is positioned on the centerline so that the droplet 
moves along the axis of the cylindrical pore. We focus on the 
impact on the droplet mobility due to the presence of the 
cylindrical pore. Parameters of electrokinetic interest are 
examined, such as the double layer thickness of the droplet, the 
relative magnitude of the viscosity of the droplet and that of the 
surrounding fluid, the ratio of pore-to-droplet radii, and so on. 
A pseudo-spectral method [26] based on Chebyshev 
polynomials is used to solve the resulting general electrokinetic 
equations numerically. This method has proven to be very 
powerful in solving various electrokinetic systems of interest. 
This study provides important fundamental information about 
the electrophoretic behavior of liquid droplet in micro- or nano- 
channels, which is essential to the successful design and 
operation of microreactor or LOC devices, used frequently in 
biochemical or biological fields. The conventional technique of 
capillary electrophoresis (CE) is also closely related to the 
system studied here, thus may benefit from it as well. 

 
II. THEORY 

The system under study here is illustrated in Fig. 1, where a 
spherical droplet of radius a moves with velocity U along the 
axis of a cylindrical pore of radius Rb in response to an applied 
uniform electric field E in the Z-direction. The cylindrical pore 
is filled with an aqueous solution containing z1 : z2 electrolytes, 
where z1 and z2 are the valences of cations and anions. The 
electroneutrality in the bulk liquid phase requires that n20 = 
n10/α, where n10 and n20 being respectively the bulk 
concentrations of cations and anions and α = -z2/z1. Spherical 
coordinates (r,θ,ϕ) is adopted to describe the internal liquid 
phase, and the cylindrical coordinates (R,Θ,Z) is applied to 
region external to the droplet as well as the cylindrical wall. 

The origin of the spherical coordinate is located at the center of 
the liquid droplet and the symmetric nature of the problem 
suggests that only half of the (r,θ) domain needs to be 
considered. 

The main assumptions in our analysis are as follows. (i) The 
Reynolds number of the liquid flow is small enough to ignore 
inertial terms in the Navier–Stokes equations and the liquid can 
be regarded as incompressible. (ii) The applied field E is weak 
so that the liquid droplet velocity U is proportional to E and 
terms of higher order in E may be neglected. In practice this 
means E is small compared with the fields that occur in the 
double layer, with ׀E׀ << ζκ, the characteristic electric field 
measured by the zeta potential divided by the double layer 
thickness. (iii) The permittivity ε takes the same value both 
inside and outside the liquid droplet. (iv) The droplet surface is 
considered mobile, and the so-called Rybczynski-Hadamard 
theory, which assumes both the velocity and the shear stress are 
continuous across the droplet surface in hydrodynamics is 
employed. The governing equations for the problem here are, 
respectively, the Poisson equation, the Stokes equation inside 
the liquid droplet (0 < r < a) and outside the liquid droplet with 
an extra consideration of the electric force (r > a). To simplify 
the treatment, subsequent discussions are based on scaled 
symbols, i.e., the governing equations are rewritten in 
dimensionless form. The following symbols are chosen for the 
characteristic variables: the radius of liquid droplet, a, the 
thermal electric potential per valence of cations, φ0 (defined as 
kBT/z1e), the bulk concentration of the cations, n10, and the 
velocity based on Smoluchowski’s theory [27] when an 
external electric field φ0/a is applied, UE = εφ0

2/μoa. 
Corresponding dimensionless variables are listed as follows: r* 
= r/a, R* = R/a, Z* = Z/a, nj

* = nj/n10, E* = E/(φ0/a), φe
* = φe/φ0, 

δφ* = δφ/φ0, ψ* = ψ/UEa2, ζa
* = ζa/φ0, v* = v/UE, 

2
1 2

B 0
1

/ ( )j j
j

k T n ezκ ε−

=

= ∑ , σ = μo/μi. The dimensionless forms 

of the governing equations are with assuming low surface 
potential: 

( )2*2 * * 0e eaφ κ φ∇ − = , (1) 
*2 * 0δφ∇ = , (2) 
*4 * 0E ψ = ,     0 < r* < 1,  (3) 

( )
* ** *

2*4 *
* * sine eE a

r r
φ φδφ δφψ κ θ
θ θ

⎛ ⎞∂ ∂∂ ∂
= − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

,     r* > 1. (4) 

At the center of the droplet, axial symmetry condition applies 
to both φe

* and δφ*. The cylindrical wall (R* = Rb
* = Rb/a) is 

supposed to be nonconductive and uncharged. At the 
droplet–liquid interface, the boundary conditions such as the 
electric field, as well as the flow field on the surface of the 
droplet (r* = 1) should be continuous. The zeta potential of 
droplet is assumed to be ζa

*. For convenience, we assume that 
the fluid is fixed, and the cylindrical pore moves with velocity 
-Uiz, where iz is the unit vector along the axis. In addition, all 
variables must satisfy the axial symmetry condition as well at θ 
= 0, π. To avoid divergence problem in calculation, the 
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boundary conditions of equilibrium potential and flow field in 
the Z-direction far away from the particle needs special 
treatment, as reported by Carnie [22]. We adopt an alternative 
approach here by assuming fully-developed flow and uniform 
electric potential distribution at both ends of a finite cylinder of 
length L. Hence at both ends the equilibrium potential can be 
adopted as ∂φe

*/∂Z = 0, and the velocity conditions can be taken 
as ∂ψ*/∂Z = 0 due to an uncharged pore. Instead, a finite value 
of L/a is selected, with one dimensional electric potential 
profile applied at both inlet (Z* = -L/a) and outlet (Z* = L/a). 
Based on these assumptions, the boundary conditions 
associated with the present problem are as follows: 

*

* 0e

r
φ∂

=
∂

,  r* = 0, (5) 

* *
e aφ ζ= ,   r* = 1, (6) 

* 0eφ = ,  * bR
R

a
= , (7) 

*

* 0e

Z
φ∂
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∂
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a
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According to O'Brien and White [28], the present problem 

can be divided into two sub-problems. In the first problem, the 
droplet moves in the absence of the applied electric field, E, and 
in the second problem E is applied, but the droplet is kept fixed 
instead. In the first problem the total force acting on a droplet in 
the vertical direction, F1, is proportional to its electrophoretic 

 
 
 
 
 
 
 
 

 
 

Fig. 1 Schematic representation of the problem considered where a 
liquid droplet of radius a is placed on the axis of a long cylindrical pore 
of radius Rb. A uniform electric field E parallel to the axis of the pore is 

applied in the Z-direction. 
 
velocity, U*, while in the second problem the total force, F2, is 
proportional to the applied electric field, EZ

*. Therefore, we 
have F1 = c1U* and F2 = c2EZ

*. Because F1 + F2 = 0 at steady 
state, the dimensionless electrophoretic mobility, μm

*, can be 
expressed as  

*
* 2

*
1

m
U c
E c

μ = = − . (18) 

Note that both c1 and c2 are independent of U* and E*. The 
forces acting on a droplet Fi comprises the electric force FiEz 
and the hydrodynamic force FiDz, where the subscript i 
represents sub-problem 1 and 2. Once FiEz and FiDz are evaluate, 
ci and μm

* can be obtained easily. 
 

III. RESULTS AND DISCUSSION 
Key parameters are examined for their respective influence 

on the system under consideration, that is, the electrophoretic 
behavior of a charged liquid droplet along the axis of an 
uncharged cylindrical pore. We assume that the pore is 
sufficiently long so that the end effects of the flow field can be 
neglected. To make sure that this is appropriate, the scaled 
transition length of a pore L, the shortest length to achieve fully 
developed flow, is tested under conditions of interest. It turns 
out that a length L equivalent to roughly six times that of the 
droplet radius is sufficient to assume a fully developed flow 
field. 

Fig. 2 illustrates the variation of the droplet mobility as a 
function of the scaled double layer thickness κa at various 
viscosity ratios σ (μo/μi). Here, a large value of σ (say, σ = 100) 
simulates the case when gas bubbles are dispersed in a liquid 
phase. On the other hand, a small value of σ (say, σ = 0) 
simulates the case where rigid particles are dispersed in a liquid 
phase. Fig. 2 suggests that, for a fixed κa, the larger the value of 
σ, the greater the mobility of a droplet. This is mainly because 
of the fact that the shear drag force experienced by a nonrigid 
particle (such as bubble and liquid droplet) is smaller than that 
of a rigid particle. Fig. 2 also indicates that the larger the κa, the 
greater the difference between the mobilities of droplets of 
different viscosities. 

The variations of the mobility μm
* as a function of the 

viscosity ratio σ at various double layer thickness κa are 
presented in Fig. 3.This figure reveals that if the double layer is 
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Fig. 2 Droplet mobility as a function of κa at different values of σ with 
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Fig. 3 Droplet mobility as a function of σ at different values of κa with 

ζa
* = 1, Rb

* = 2 
 

thick or medium, μm
* (σ = 100) is nearly 2-3 times of μm

* (σ = 
0.01). For a thin double layer, however, μm

* (σ = 100) is up to 
7-8 times of μm

* (σ = 0.01). 
The boundary effect arising from the presence of the 

cylindrical pore, measured by the ratio of pore-to-droplet radii, 
Rb

*, on the droplet’s electrophoretic mobility, μm
*, is presented 

in Fig. 4. The presence of the cylindrical pore “squeezes” the 
double layer surrounding the droplet when it is thick hence 
affects the droplet motion by means of both the electrostatic 
interaction and the hydrodynamic drag. As a result, the 
boundary effect, in terms of the reduction of droplet mobility, is 
most significant at small κa, whereas tends to diminish as κa 
increases, as shown in Fig. 4. The larger the radius of the 
cylindrical pore, the higher the droplet mobility. In Fig. 5, the 
variations of the mobility μm

* as a function of the viscosity ratio 
σ at various Rb

* 
 is further considered. The larger the radius of 

the cylindrical pore, the larger the droplet mobility is, as 
expected. Moreover, the narrower the cylindrical 
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Fig. 4 Droplet mobility as a function of κa at different values of Rb

*  
with ζa

* = 1, ζw
* = 0, σ = 1 
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Fig. 5 Droplet mobility as a function of σ at different values of Rb

*  
with ζa

* = 1, ζw
* = 0, κa = 0.1. The dashed-dot line represents the 

Ohshima’s  results [17] with the corresponding case of an isolated 
droplet 

 
pore (Rb

*), the more significant the deviation of droplet 
mobility between different σ is. Compared with an isolated 
droplet in an infinite medium of electrolyte solution, for 
example, the boundary effect here for Rb

* = 2 amounts to a 
reduction of droplet mobility roughly by 40% for high σ (σ = 
100) to around 70% for relatively low σ (σ = 0.01). In other 
words, the boundary effect is less significant as the viscosity 
ratio gets high due to the less hydrodynamic drag interaction 
between the cylindrical pore and the particle. The reduction in 
droplet mobility serves as a good measurement of the boundary 
effect. 

 
IV. CONCLUSION 

Electrophoresis of a charged liquid droplet along the 
centerline of an uncharged cylindrical pore is investigated 
theoretically in this study. A pseudo-spectral method based on 
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Chebyshev polynomial is used to solve the resulted general 
electrokinetic equations, and various key parameters are 
examined for their effects on particle motion. We find: 

 
(a) The mobility of a droplet is greater than that of a rigid 
particle. This is because the shear drag force experienced by a 
nonrigid particle (such as bubble and liquid droplet) is smaller 
than that of a rigid particle. The larger the κa, the greater the 
difference between the mobilities of droplets corresponding to 
different viscosities.  
 
(b) The boundary effect is very significant when double layer 
is thick and diminishes as it gets very thin, due to the profound 
electrostatic and hydrodynamic interaction associated with the 
severe physical deformation of double layer with a nearby 
cylindrical pore. Up to 70% reduction is observed when the 
viscosity ratio of the droplet is low. 

 
The results of this study have potential applications in 

various microfluidic and nanofluidic operations, such as 
biosensors and lab-on-a-chip devices. 
 

APPENDIX 
Notations 
a  the radius of the liquid droplet (m). 
 e  elementary electric charge (1.6 × 10-19

 coul). 
E  the applied field (volt/m). 
Ez  the applied field in Z–direction (volt/m). 
kB  Boltzmann’s constant (1.38 × 10-23 joul/K). 
 nj  number concentration of the jth ionic species (#/m3). 
nj0 bulk concentration of the jth ionic species (#/m3). 
p  pressure (Nt/m2). 
R R–coordinate in the cylindrical coordinates. 
Rb the radius of the cylindrical pore (m). 
r  r–coordinate in the spherical coordinates. 
 T  absolute temperature (K). 
U  electrophoretic velocity of the particle (m/s). 
UE the characteristic velocity based on Smoluchowski’s 

theory (m/s). 
v  fluid velocity (m/s). 
vs  the average velocity of electroosmotic flow (m/s). 
Z Z–coordinate in the cylindrical coordinates. 
zj  valence of the  jth ionic species. 
 
Greek letters 
α valence ratio between negative and positive charged 

electrolytes. 
ε  dielectric constant (coul/volt-m). 
ζw  zeta–potential on the cylindrical wall (volt). 
Θ  Θ–coordinate in the cylindrical coordinates. 
θ  θ–coordinate in the spherical coordinates. 
κ  reciprocal of the Debye length (1/m). 
μ  viscosity of the fluid (Pa⋅s). 
μi  viscosity of the internal fluid (Pa⋅s). 
μo  viscosity of the surrounding fluid (Pa⋅s). 
 μm  electrophoretic mobility. 
ρ  space charge density (coul/m3). 

φ  φ–coordinate in the spherical coordinates. 
φ  electric potential (volt). 
σ  viscosity of the surrounding fluid/viscosity of the internal 
  fluid. 
ψ  stream function  (m3/s). 
 
Superscripts 
* dimensionless form. 
 
Subscripts 
 e  equilibrium state. 
0 macroscopic state. 
1 cation. 
2 anion. 
 
Mathematical Operations 
▽  the gradient operator. 

▽2 the Laplacian operator. 
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