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Abstract—Electromyography (EMG) is one of the most 

important interfaces between humans and robots for rehabilitation. 
Decoding this signal helps to recognize muscle activation and 
converts it into smooth motion for the robots. Detecting each 
muscle’s pattern during walking and running is vital for improving 
the quality of a patient’s life. In this study, EMG data from 10 
muscles in 10 subjects at 4 different speeds were analyzed. EMG 
signals are nonlinear with high dimensionality. To deal with this 
challenge, we extracted some features in time-frequency domain and 
used manifold learning and Laplacian Eigenmaps algorithm to find 
the intrinsic features that represent data in low-dimensional space. 
We then used the Bayesian classifier to identify various patterns of 
EMG signals for different muscles across a range of running speeds. 
The best result for vastus medialis muscle corresponds to 97.87±0.69 
for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 
accuracy using Bayesian classifier. The results of this study provide 
important insight into human movement and its application for 
robotics research.  
 

Keywords—Electrocardiogram, manifold learning, Laplacian 
Eigenmaps, running pattern. 

I. INTRODUCTION 

MPROVING the accuracy of synthesized human motion is 
an ongoing challenge in various disciplines such as 

neuroscience [1], physiology, biomechanics [2], brain 
computer interface [3], and robotics [4], [5]. In such 
applications, feasible sensing technologies such as EMG, 
cortical neural implants, and human motion reconstruction 
provide some channels for interface. These fields attempt to 
decode these neural activities and map them into movement 
commands for devices such as robots [6], [7]. Therefore, 
finding an effective way for decoding the neuromuscular 
activities with the purpose of accurate modeling and 
recognition of motion patterns will help convert kinematic 
variables to smooth motion for a robot [8], [9].  

Investigating EMG patterns during walking and running at 
different speeds is a popular research question of many studies 
[10]-[12]. The EMG patterns of leg muscles during stride have 
been used to clinically assess injury [13], and prevent disease 
by designing sport shoes [14]. These patterns have different 
morphologies during walking and running at different speeds 
 

Elnaz Lashgari is PhD student in California State University, Long Beach 
with the Mechanical and Aerospace Engineering Department CA 90840-8306 
USA (e-mail: elnaz.lashgari@csulb.edu). 

Dr. Emel Demircan is assistant professor with the Mechanical and 
Aerospace Engineering Department, California State University, Long Beach, 
CA 90840-8306 USA (phone: 562-985-1520; fax: 562-985-4408; e-mail: 
emel.demircan@csulb.edu). 

Research is supported by California State University Long Beach Small 
Faculty Grant and Alumni Grant. 

[15]. 
By finding similarities between EMG patterns at different 

speeds, the number of basic functions for running can be 
reduced. On the other hand, EMG signals are complex and 
nonlinear, and the challenge faced by analyzing these signals 
is the range of variation of its patterns. Multivariate EMG data 
are noisy and redundant. Therefore, extracting significant 
features and representing the underlying structure in an 
efficient way is important [16], [17]. Several methods were 
used to classify the profile of EMG during running. In this 
study, instead of working with points with high-
dimensionality features, we applied Manifold learning and the 
Laplacian Eigenmaps algorithm to find intrinsic features [18]. 
The relationships between EMG and ground reaction forces 
were investigated at four speeds, for 10 important muscles (in 
running) with 10 male subjects. We discovered that the 
Laplacian Eigenmaps nonlinear dimensionality reduction 
algorithm is the most appropriate method to reduce the high 
dimensionality of EMG signals while preserving aspects in 
time-frequency domain [19]. 

Our goal was to precisely classify EMG signal, which 
affects the dynamics of a human body at different running 
speeds. The results of our simulation can be used in the role of 
each muscle in supporting or propelling the skeletal system, 
physical therapy, assessment of injury, and design of sport 
shoes. 

II. METHODS 

We used 10 EMG channel data from 10 subjects and ground 
reaction forces which occurred during running at different 
speeds on a treadmill [20]. In post processing step we de-
noised and normalized the EMG signals, then extracted 
features in time-frequency domain, which formed our input 
matrix for the manifold learning algorithm. 

A. Subjects and Protocol 

In this study, we used the data collected at Stanford 
University [20]. The data set included EMG signals of ten 
subjects running on a treadmill at four speeds: 2.0, 3.0, 4.0, 
and 5.0 m/s. Each subject was an experienced long distance 
runner and all of them were male with average mass, height 
and age of 71 kg, 1.77m and 30 years, respectively.  

B. Post-Processing 

EMG signals were recorded with surface electrodes (Delsys 
Bagnoli system). Ten selected muscles that play an important 
role in running are: Gluteus maximus (on line between greater 
trochanter and sacrum), gluteus medius (on line between 
greater trochanter and crista iliaca), biceps femoris-long head 
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(dorsomedial side of thigh), vastus lateralis (anterolateral 
muscle bulge thigh), vastus medialis (anteromedial muscle 
bulge thigh), tibialis anterior (ventral side of lower leg, just 
lateral from tibia), gastrocnemius lateralis (middle of muscle 
bulge), gastrocnemius medialis (middle of muscle bulge), 
soleus (medial and anterior from achilles tendon), rectus 
femoris (between vastus medialis and vastus lateralis). 

The EMG signal appears random in nature and it is difficult 
to obtain high-quality electrical signals from EMG sources 
because the signals typically have low amplitude (in range of 
mV) and are easily corrupted by noise during recording. 
Before feature extraction, the EMG signal should be processed 
to suppress the noise. The most conventional technique for de-
noising is filtering or smoothing methods [21], [22]. The post-
processing of EMG signal included using a 4th order 
Butterworth high-pass filter with cut-off frequency 20 Hz with 
a zero-phase, full-wave rectification, and a Butterworth low-
pass filter with 4th order and cut-off frequency 24 Hz with a 
zero-phase, it was corrected for offset and normalized. Fig. 1 
represents the stages in post-processing of raw EMG of biceps 
femoris long head during running with speed of 2 m/s. Fig. 2 
shows basic pattern of EMG during running for one subject 
(Subject 2). In running, muscles can be divided into groups 
according to their pattern in time domain [10]. Calf group 
includes; soleus, gastrocnemius medialis, and gastrocnemius 
laterial, which have major differences between walking and 
running. Vastus medialis, vastus laterial and rectus femoris are 
in the quadriceps group. While the profiles were identical, the 
speed dependence was not; their amplitude hardly changed 
with increasing speed. 

Gluteus medius and gluteus maximus are from the gluteal 
group. At low speed there is one peak in the pattern. By 
increasing the speed the gluteal group profiles consist of 2 
peaks, which linearly increase with speed. Tibialis anterior is a 
separate group, which completes the swing phase of stride. 

In Fig. 3 we represented the pattern of de-noised and 
normalized gastrocnemius medialis EMG signals at different 
speeds of 2, 3, 4, and 5 m/s. 

 

 

Fig. 1 Post-processing of raw EMG of biceps femoris long head 
during running at speed 2 m/s 

C. Feature Selection 

To demonstrate the proposed approach, a total of 50 
segments were selected for each muscle of different subjects, 
where these segments provide our dataset utilized in this study. 
The EMG segments included intervals of one period on 
running which is approximately 1 second and included one 
stride [23]. For this purpose we used an efficient algorithm of 
Automatic Peak Detection, which is designed for noisy and 
periodic signals [32]. After defining our segments we needed to 
interpolate all segments to 500 points to make them the same 
size, considering all their features. 

D. Feature Extraction 

In this paper we extracted features in time-frequency 
domain [24], [25]. The time domain features included the 
interpolated points in each segment, which corresponds to the 
amplitude of filtered EMG signals. Then we extracted features 
in frequency domain as the following: 
 Autoregressive coefficients: describe each of EMG 

segment as a linear combination of previous samples plus 
a white noise error term. 
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Multivariate EMG signals are highly redundant. 

Representing useful and significant features in low dimensional 
space shows that the underlying structures is a major task. 
Manifold learning simplified the issue to find the intrinsic 
features of EMG sets. 

C. Manifold Learning and Laplacian Eigenmaps 
Algorithm 

Complex and non-linear data sets are hard to study in their 
original form; scientists try to find meaningful low-
dimensional data, which is hidden in their high dimensional 
form. Several algorithms have been proposed to analyze the 
structure of high-dimensional data based on the notion of 
manifold learning. These algorithms have been used to extract 
the intrinsic characteristics of different types of high-
dimensional data by performing nonlinear dimensionality 
reduction such as ISOMAP [18], local linear embedding (LLE) 
[26] and Laplacian Eigenmaps [19].  

All these approaches are completed in 3 main stages: 
1. Construct neighborhood graph: Define graph G over all 

data points ݅ and ݆ which measured by ݀௫ሺ݅, ݆ሻ and set 
edge lengths equal to ݀௫ሺ݅, ݆ሻ. 

2. Compute shortest paths: Initialize ݀ீሺ݅, ݆ሻ ൌ ݀௫ሺ݅, ݆ሻ if ݅, ݆ 
are linked by an edge, ݀௫ሺ݅, ݆ሻ =∞ otherwise, then for 
each value of ܭ compute ݀ீሺ݅, ݆ሻ and find the final matrix 
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which contains the shortest path distances between all 
pairs of data in	ܩ. 

 

 

Fig. 2 Patterns of 10 EMG signals in time domain for subject2 during 
running at speed 2 m/s 

 

 

Fig. 3 EMG Pattern of Gluteus medius pattern at four different speeds 
2, 3, 4 and 5 m/s 

 

3. Construct d-dimensional embedding: Let ߣ௣be the p-th 

eigenvalue in decreasing order of the matrix and ݒ௜
௣be the 

i-th component of the p-th eigenvector. Then set the p-th 
component of the d-dimensional coordinate vector 

௜ݒ௣ߣequal to ට	௜ݕ
௣. 

We found that the nonlinear dimensionality reduction 
algorithm “Laplacian Eigenmaps” was the most appropriate 
method to reduce the high dimensionality of the EMG signals 
while preserving its properties. The algorithm for Laplacian 
Eigenmaps is formally stated below [19], [23]. 
Step1.  (Constructing the adjacency graph). We put an edge 

between nodes i and j if ݔ௜	and ݔ௝ are “close”. There are 
two variations: 

i. ߳-neighborhoods (parameter ߳ ∈ R). Nodes i and j are 

connected to each other by an edge if ฮݔ௜ െ ௝ฮݔ
ଶ
൏ ߳ (the 

Euclidean norm) in	࣬஽. The advantage of this method is 
that it is geometrically motivated, the relationship is 
naturally symmetric. The drawback of this method: it 
often leads to graphs with several connected components, 
which make it difficult to choose ߳ 

ii. K nearest neighbors (K ∈ N). Nodes i and j are connected 
by an edge if i is among K nearest neighbors of j and 
always this relation is symmetric. In this paper we use this 
method. 

Advantages: Simplification of the selection process. This 
method has a smaller probability of disconnected graphs. 
Disadvantages: Geometrically less instinctive 
Step2.  (Choosing the weights). Here we also have two 

variations for weighing the edges: 
i. Heat kernel (parameter t ∈ R). If nodes i and j are 

connected, put ௜ܹ௝ ൌ ݁ି
ቛೣ೔షೣೕቛ

మ

೟  otherwise, put Wij = 0. 
ii. Simple-minded (no parameters (ݐ ൌ ∞)). Wij = 1 if 

vertices i and j are connected by an edge and Wij = 0 if 
vertices i and j are not connected by an edge. This 
simplification avoids the need to choose t.  

Step3.  (Eigenmaps). Assume graph G, depicted above, is a 
continuous function. Otherwise, proceed with step 3 for 
every individually connected data. Obtain eigenvalues 
and eigenvectors for the problem. 

 
Lf = λDf 

 
where D is symmetric diagonal weight matrix, and its entries 
are column sums of W, Dii =∑ ௝ܹ௜௝ . L = D – W is the 
Laplacian matrix which is symmetric, positive semi definite 
matrix that can be as an operator on functions defined on 
vertices of G. 
Let ଴݂, ଵ݂, … , ௡݂ିଵ be the solutions of Lf = λDf ordered 
according to their eigenvalues: 
 

L ଴݂ = ߣ଴D ଴݂ 
L ଵ݂ = ߣଵD ଵ݂ 

… 
L ௡݂ିଵ= ߣ௡ିଵD ௡݂ିଵ 

 .௡ିଵߣ≥… ≥ ଵߣ ≥ ଴ߣ = 0
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We leave out the eigenvector ଴݂ corresponding to eigenvalue 0 
and use the next d eigenvectors for embedding in d-dimensional 
Euclidean space: ݔ௜ → ൫ ௜݂ሺ݅ሻ, … , ௗ݂ሺ݅ሻ൯.	 

III. RESULTS 

A. Pattern of Each Muscle at Different Speeds 

In Fig. 3 we represented the EMG pattern of the gluteus 
medius of one subject (Subject 1) at different speeds. By 
training Laplacian Eigenmaps algorithm we generalized the 
result of changing EMG pattern at various speeds. Each subject 
has 5 stride-EMG records at 4 different speeds. So we used 200 
segments for the input matrix of Manifold learning and set 
k=20 which shows nearest neighborhoods. Each segment has 
503 features in the time-frequency domain. Fig. 4 shows the 
output of the algorithm in 2-D Cartesian space for the vastus 
medialis muscle. 
 

 

Fig. 4 Laplacian Eigenmaps of vastus medialis with k=20 at 4 
different speeds 

 
For the classification, nearest neighborhood (NN) [27], 

Fisher Linear Discriminate Analysis (FLDA) [28] and the 
Bayesian classifier [29], [30] were employed to evaluate and 
compare the classification performance by different classifiers. 
Cross-validation procedure with 5 fold and 10 run was applied 
to evaluate the classification accuracy. The recognition 
performance of system was measured by accuracy, sensitivity 
and specificity [31]. The mean and standard deviations for the 
specified measures were evaluated and compared. The best 
result for each muscle is shown in Table I for different k and 
different classifiers for vastus medialis. The effect of change 
of EMG activities at different speeds can be reflected in 
accuracy. The best result for this muscle is indicated in bold 
and corresponds to 97.87	േ	0.69 for sensitivity and 88.37 േ 
0.79 for specificity with 97.07 േ 0.29 accuracy with Bayesian 
classifier.  

Table II shows a similar result for other muscles with k=20 
and Bayesian classifier. 

 
TABLE I 

LAPLACIAN EIGENMAPS FOR EMG OF VASTUS MEDIALIS FOR DIFFERENT K 

AND BAYESIAN, NN AND FLDA CLASSIFIERS 

K Sensitivity Specificity Accuracy 

B
ay

es
ia

n
 

5 
10 
15 
20 
40 
60 
80 
100 
150 
200 

93.12 േ 0.37 
95.21 േ 0.32 
96.25	േ 0.26 
97.87	േ	0.63 
97.32 േ 0.21 
97.58 േ 0.25 
96.34 േ 1.12 
96.12 േ 0.98 
96.23 േ 1.54 
95.12 േ 0.07 

86.66 േ 1.24 
84.55 േ 0.23 
85.66 േ 1.09 
88.37 േ 0.79 
81.61 േ 1.04 
83.25 േ 1.32 
81.26 േ 1.12 
81.95 േ 1.22 
82.29 േ 1.34 
79.01 േ 1.04 

96.98 േ 0.27 
96.41 േ 0.53 
96.94 േ 0.89 
97.07 േ 0.29 
97.31 േ 0.34 
95.73 േ 0.39 
95.23 േ 1.18 
95.95 േ 0.23 
95.67 േ 1.32 
95.87 േ 0.25 

K Sensitivity Specificity Accuracy 

N
ea

re
st

 N
ei

gh
bo

rh
oo

d 5 
10 
15 
20 
40 
60 
80 
100 
150 
200 

92.22 േ 0.32 
92.37 േ 0.46 
93.45	േ 0.21 
93.76	േ	0.98 
93.98 േ 0.27 
93.45 േ 0.35 
92.54 േ 1.14 
92.34 േ 0.38 
92.45 േ 1.58 
91.65 േ 0.87 

83.64 േ 0.44 
83.35 േ 0.53 
85.56 േ 1.06 
85.55 േ 0.69 
86.12 േ 1.66 
86.23 േ 0.72 
85.98 േ 0.92 
85.55 േ 1.22 
85.45 േ 0.56 
84.06 േ 1.94 

93.97 േ 1.78 
93.61 േ 1.75 
94.34 േ 0.84 
94.17 േ 0.49 
92.23 േ 0.22 
94.97 േ 0.29 
94.67 േ 0.99 
93.32 േ 0.98 
93.33 േ 0.36 
93.47 േ 0.54 

K Sensitivity Specificity Accuracy 

F
L

D
A

 

5 
10 
15 
20 
40 
60 
80 
100 
150 
200 

94.45 േ 1.02 
93.32 േ 1.23 
94.76	േ 0.54 
95.54	േ	0.34 
95.11 േ 0.67 
95.23 േ 0.87 
94.98 േ 1.65 
94.54 േ 0.43 
93.76 േ 1.24 
90.34 േ 1.98 

86.34 േ 0.39 
86.65 േ 0.56 
86.97 േ 1.76 
86.43 േ 0.34 
86.23 േ 0.25 
86.56 േ 0.28 
84.98 േ 0.67 
83.55 േ 1.23 
80.45 േ 0.24 
77.26 േ 2.34 

94.91 േ 0.32 
94.91 േ 0.72 
94.24 േ 0.34 
95.35 േ 0.76 
95.36 േ 0.28 
95.46 േ 0.23 
94.12 േ 0.19 
93.87 േ 0.98 
93.34 േ 0.87 
93.76 േ 0.94 

 
This study utilized a PC based system and Matlab R2012b 

code on a 2.53 GHz Intel® Core™2 Duo CPU, the typical 
processing time was in the range of 30 seconds for the 
proposed method. 

B. Classification of Groups of Muscles at Each Speed 
TABLE II 

LAPLACIAN EIGENMAPS FOR EMG OF 10 SELECTED MUSCLES WITH K=20 AND 

BAYESIAN CLASSIFIER 
EMG 

classification of 
muscles in 

different speed 

Laplacian Eigenmaps for K=20 and Bayesian 
classifier 

Sensitivity Specificity Accuracy 

soleus 98.10 േ 0.34 89.10	േ 0.33 97.01േ 0.52 
gastrocnemius 

medialis 
98.98 േ 0.62 90.61 േ 0.44 96.61 േ 0.42 

gastrocnemius 
lateralis 

98.02 േ 0.56 88.55	േ 0.16 96.18േ 0.82 

vastus medialis 97.87 േ 0.69 88.37	േ	0.79 97.07േ 0.29 

vastus lateralis 97.32 േ 0.21 86.92 േ 0.91 98.54 േ 1.01 

rectus femoris 98.03 േ 0.61 89.15 േ 0.56 98.32 േ 0.54 
biceps femoris-

long head 
99.05 േ 0.01 91.65 േ 0.23 98.65 േ 0.02 

gluteus medius 98.45 േ 0.84 92.74 േ 0.84 97.70 േ 0.84 

gluteus maximus 98.71 േ 0.24 92.70 േ 0.24 96.70 േ 0.12 

tibialis anterior 98.70 േ 0.64 93.31 േ 0.78 93.32 േ 0.14 

 
In this study, we investigated different patterns of EMG 

signals of different subjects at specific speeds. This issue is 
important to classify the contribution of each muscle to body 
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mass-center accelerations. 
The input matrix for training our algorithm consists of 500 

rows and consisting of 503 features. Fig. 5 shows the results of 
the Laplacian Eigenmaps algorithm. 

 

 

Fig. 5 Laplacian algorithm of 10 selected muscles with k=20 at speed 
4 m/s 

IV. CONCLUSION 

This study applied manifold learning and Laplacian 
Eigenmaps algorithm in order to identify various patterns of 
EMG signals for different muscles at different running speeds. 
Laplacian Eigenmaps nonlinear dimensionality reduction 
algorithm is the most appropriate method to reduce the high 
dimensionality of EMG signals while preserving aspects in 
time-frequency domain. This work precisely classified EMG, 
which affected the dynamics of a human musculoskeletal 
system at different running speeds. The results of our 
simulation can be used to investigate the contribution of each 
muscle to body mass-center accelerations, applicable in the 
humanoid control, gait analysis, physical therapy, and injury 
biomechanics. The results of this study can provide important 
insights into human movement understanding and its 
application for robotics research.  
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