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Abstract—Transition theory has been used to derive the elastic-

plastic and transitional stresses. Results obtained have been discussed 
numerically and depicted graphically. It is observed that the rotating 
disk made of incompressible material with inclusion require higher 
angular speed to yield at the internal surface as compared to disk 
made of compressible material. It is seen that the radial and 
circumferential stresses are maximum at the internal surface with and 
without edge load (for flat disk). With the increase in thickness 
parameter (k = 2, 4), the circumferential stress is maximum at the 
external surface while the radial stress is maximum at the internal 
surface. From the figures drawn the disk with exponentially varying 
thickness (k = 2), high angular speed is required for initial yielding at 
internal surface as compared to flat disk and exponentially varying 
thickness for k = 4 onwards. It is concluded that the disk made of 
isotropic compressible material is on the safer side of the design as 
compared to disk made of isotropic incompressible material as it 
requires higher percentage increase in an angular speed to become 
fully plastic from its initial yielding. 
 

Keywords—Finite deformation, Incompressibility, Transitional 
stresses, Elastic-plastic. 

I. INTRODUCTION 
HIS paper is concerned with the analysis of a rotating disk 
made of isotropic material with exponentially varying 
thickness. There are many applications of such type of 

rotating disks, such as in turbines, rotors, flywheels and with 
the advent of computers, disk drives. The use of rotating disk 
in machinery and structural applications has generated 
considerable interest in many problems in domain of solid 
mechanics. The analysis of stress distribution in circular disk 
rotating at high speed is important for a better understanding 
of the behavior and optimum design of structures. The 
analysis of thin rotating disks made of isotropic material has 
been discussed extensively by Timoshenko and Goodier [1]. 
In the classical theory, solutions for such type of disks made 
of isotropic material can be found in most of standard 
textbooks [1]-[5]. Chakrabarty [2] and Heyman [6] solved the 
problem  
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for the plastic state by utilizing the solution in the elastic range 
and considering the plastic state with the help of Tresca’s, 
von-Mises or any other classical yield condition. Han [7] has 
investigated elastic and plastic stresses for isotropic materials 
with variable thickness. Eraslan [8] has calculated elastic and 
plastic stresses having variable thickness using Tresca’s yield 
criterion, its associated flow rule and linear strain hardening. 
Wang [9] has investigated deformation of elastic half rings. 

Transition is a natural phenomenon and there is hardly any 
branch of science or technology in which we do not come 
across transition from one state to another. At transition, the 
fundamental structure of the medium undergoes a change. The 
particles constituting a medium rearrange themselves and give 
rise to spin, rotation, vorticity and other non-linear effects. 
This suggests that at transition, non-linear terms are very 
important and neglection of which may not represent the real 
physical phenomenon. Therefore transition fields are non-
linear, non-conservative and irreversible in nature. Elasticity-
plasticity, visco-elastic, creep, fatigue, relaxation are some of 
the examples of transition in which non-linear terms are very 
important. At present, such problems like elastic-plastic, creep 
and fatigue are treated by assuming ad-hoc, semi-empirical 
laws with the result that discontinuities, singular surfaces, 
non-differentiable regions have to be introduced over which 
two successive states of a medium are matched together. In a 
series of papers, Seth [10]-[12] has given an entirely different 
orientation to this interesting problem of transition. He has 
developed a new ‘transition theory’ of elastic-plastic and 
creep deformation. The transition theory utilizes the concept 
of generalized principal strain measure and asymptotic 
solution at critical points or turning points of the differential 
system defining the deformed field and has been successfully 
applied to a large number of problems [13]-[19]. The 
generalized principal strain measure [19] is defined as,  
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where n  is the measure and A
ije  is the principal Almansi 

finite strain components. For n = -2, -1, 0, 1, 2 it gives 
Cauchy, Green, Hencky, Swainger and Almansi measures 
respectively.  

In this paper an attempt has been made to study the 
behavior of isotropic thin rotating disk with exponentially 
variable thickness and edge load using transition theory [10]. 
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The thickness of the disk is assumed to vary along the radius 
in the form  
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where k  the geometric parameter and b is the radius of the 
disk. 

II. OBJECTIVE OF THE PRESENT STUDY  
In order to explain the elastic-plastic deformation, it is first 

necessary to recognize the transition state as an asymptotic 
one and in this work; it is our main aim to eliminate the need 
for assuming semi-empirical laws, yield condition. We also 
obtain the constitutive equation corresponding to the transition 
state. 
Borah [16] identified the transition state in which the 
governing differential equation shows some criticality. The 
general yield condition of transition is identified from the 

vanishing of Jacobian of transformation,
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where (X,Y,Z), (x,y,z) are the coordinates of a point in the 
undeformed and deformed state respectively. 
 

III.  GOVERNING EQUATIONS 

We consider a thin disk of constant density with central 
bore of radius ‘a’ and external radius ‘b’. The disk is rotating 
with angular speed ‘ω ’about an axis perpendicular to its 
plane and passed through the center of the disk. A case of 
plane stress is taken in which the axial stress ZZT  is zero. The 
disk is assumed to be symmetric with respect to the mid plane. 
The displacement components in cylindrical polar co-
ordinates are given by [11]. 

dzwvru ==−= ;0);1( β                    (2) 

where β  is a function of 22 yxr += only and d is a 
constant. The finite strain components are given as 
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where 
dr
dββ =' . 

On substitution of equation (3) in (1), the generalized 
components of strain are given as 
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The stress-strain relations for isotropic material are given as 
)3,2,1,,(,2 =+= kjieIT ijkijij μλδ             (5) 

where ijT and ije are the stress and strain components 

respectively, λ  and μ are the Lame’s constants, kkk eI =  is 

the first strain invariant and ijδ  is the Kronecker’s delta. 

Equation (5) for this problem becomes 
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Substituting equation (3) in (5), the strain components in 
terms of stresses are obtained as  
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where E is the Young’s modulus and C is the compressibility 
factor of the material. In terms of Lame’s constant they are 
given as 
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Substituting equation (4) in (6), we get the stresses as  
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Equations of equilibrium are all satisfied except 

( ) 022 =+− hrhThrT
dr
d

rr ωρθθ                   (9)  

where ρ  density of material and h is the exponentially 
variable thickness of the disk.  
Using equation (8) in (9), we get a non-linear differential 
equation in β  as 
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where Pr ββ ='  (P is a function of β  and β  is a function 
of r). Transition or turning points of P  in equation (10) 
are ±∞→−→ PandP 1 . The boundary conditions are: 
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IV. SOLUTION THOUGH THE PRINCIPAL STRESS 

It has been shown [13]-[19] that the asymptotic solution 
through the principal stress leads from elastic to plastic state at 
the transition point ±∞→P , we define the transition 
function R as 
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Taking the logarithmic differentiation of equation (12) with 
respect to r and using equation (10), we get 
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Taking the asymptotic value of equation (13) as ±∞→P  
and integrating, we get 
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where 1A  is a constant of integration, which can be 
determined by the boundary condition.  
From equation (12) and (14), we have 
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Substituting equation (15) in (9) and integrating, we get 
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where 1B  is constant of integration 
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Substituting equations (15) and (16) in second equation of (7), 
we get 
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Substituting equation (17) in (2), we get 
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 is the Young’s modulus in terms 

of compressibility factor. Using boundary condition (11) in 
equation (16) and (18), we get 
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Substituting the values of constant of integration A1 and B1 
from equation (19) in equations (15), (16) and (18) 
respectively, we get the transitional stresses and displacement 
as 
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From equation (20) and (21), we get 
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From equation (23), it is seen that θθTTrr −  is maximum at 
the internal surface (i.e. at ar = ), therefore yielding will 
take place at the internal surface of the disk and equation (23) 
become 
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and the angular speed necessary for initial yielding is given by 
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where  YT oo σ=   
 
The disk becomes fully plastic ( )0→C  at the external 
surface (i.e. at r = b) and equation (23) become 
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Angular speed required for the disk to become fully plastic is 
given by 
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We introduce the following non-dimensional components as 
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Transitional stresses, angular speed and displacement can be 
obtained from equations (20)-(22) and (24) in non-
dimensional form as 
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Stresses, displacement and angular speed for fully-plastic state 
( )0→C  are obtained from equations (26)-(28) and (25) as 
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TABLE I 

ANGULAR SPEED REQUIRED FOR INITIAL YIELDING AND FULLY PLASTIC 
STATE WITH DIFFERENT EDGE LOADING (FLAT DISK) 

 

 
 

V.  NUMERICAL ILLUSTRATION AND DISCUSSION 

In fig. 1, curves have been drawn between angular speed 
( )2

iΩ  and various radii ratios ( )baRo =  for different 

compressibility factors ( )75.0,5.0,25.0,0=C  and variable 
thickness (k=0, 2, 4). It is observed that the rotating disk made 
of incompressible material with inclusion require higher 
angular speed to yield at the internal surface as compared to 
disc made of compressible material and this behavior remains 
the same with increase in edge load ( )2.0,1.00 =T . With the 
increase in edge load, the angular speed required for initial 
yielding decreases. From table 1, it is seen that for isotropic 
compressible material, high percentage increase in angular 
speed is required to become fully plastic as compared to 
rotating disk made of incompressible material. In figs. 2-4, 
curves have been drawn between the transitional stresses, 
displacement against the radii ratio. It is seen that with the 
increase in compressibility factor, radial as well as 
circumferential stresses decreases. From fig. 5, it is observed 
that the radial and circumferential stresses are maximum at the 
internal surface (for flat disk i.e. k = 0). With the increase in 
thickness parameter (k = 2, 4), the circumferential stress is 
maximum at the external surface. With edge load the behavior 
remains the same. Similar graph is also obtained by 

venuG && [20] for rotating disk with rigid inclusion.  
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Fig. 1 Angular speed required for initial yielding at the internal surface of the rotating disk with variable thickness (k = 0, 2, 4) and edge 

loading (To = 0, 0.1, 0.2). 
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Fig. 2 Transitional stresses and displacement in a thin rotating disk along the various radii ratio (R = r/b) with compressibility (C = 0) for 
variable thickness (K = 0, 2, 4) and edge load (To = 0, 0.1, 0.2). 
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Fig. 3 Transitional stresses and displacement in a thin rotating disk along the various radii ratio (R = r/b) with compressibility (C = 0.5) for 

variable thickness (K = 0, 2, 4) and edge load (To = 0, 0.1, 0.2). 
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Fig. 4 Transitional stresses and displacement in a thin rotating disk along the various radii ratio (R = r/b) with compressibility (C = 0.75) for 

variable thickness (K = 0, 2, 4) and edge load (To = 0, 0.1, 0.2). 
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Fig. 5 Plastic stresses and displacement in a thin rotating disk along the various radii ratio (R = r/b) for variable thickness (K = 0, 2, 4) and 

edge load (To = 0, 0.1, 0.2). 

 

rσ rσ
rσ

rσ
rσrσ

rσ rσ
rσ

θσ
θσ θσ

θσ
θσ θσ

θσ
θσ

θσ

uu u

uu u

u uu



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:3, 2011

258

 

 

REFERENCES 
[1] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd  

Edi., New York: McGraw-Hill Book Coy., London, 1951. 
[2] J. Chakrabarty, Applied Plasticity, Springer Verlag, Berlin, 

2000. 
[3] W. Han, B.D. Reddy, Plasticity, Mathematical Theory and 

Numerical Analysis, Springer Verlag, Berlin, 1999. 
[4] R.B. Hetnarski, J. Ignaczak, Mathematical Theory of 

Elasticity, Taylor and Francis, 2003. 
[5] I.S. Sokolinikoff, Mathematical Theory of Elasticity, 2nd  

Edi., New York: McGraw-Hill Book Co., 1950. 
[6] J. Heyman, “Plastic design of rotating discs”, Proc. Inst. 

Mech. Engs., 1958, pp. 531-546.  
[7] R.P.S. Han, Yeh Kai-Yuan, “Analysis of High-Speed 

Rotating Disks with Variable Thickness and Inhomogenity”, 
Transactions of the ASME, 61, pp. 186-191, 1994. 

[8] A.N. Eraslan, Y.Orcan, “Elastic-plastic Deformation of a 
rotating solid disk of exponentially varying thickness”, 
Mechanics of Materials, vol. 34, pp. 423-432, 2002. 

[9] Xiu’e Wang, Xianjun Yin, “On Large Deformations of 
Elastic Half Rings”, WSEAS Transactions on Applied and 
Theoretical Mechanics, vol. 2(1), pp. 24, 2007. 

[10] B.R. Seth, “Transition Theory of Elastic-Plastic 
Deformation, Creep and Relaxation”, NATURE, vol. 195, 
No. 4844, pp. 896-897, 1962.     

[11] B. R. Seth, “Transition Analysis of Collapse of Thick-walled 
Cylinder”, ZAMM, 50, pp. 617-621, 1970. 

[12] B. R. Seth, “Creep Transition”, Jr. Math. Phys. Sci., vol. 8, 
pp. 1-2, 1972. 

[13] S. Hulsarkar, “Transition Theory of Creep Shells under 
Uniform Pressure”, ZAMM, Vol. 46, pp. 431-437, 1966.    

[14] S.K. Gupta, V.D. Rana, “Thermo Elastic-Plastic and Creep 
Transition in Rotating Cylinder”, J. Math. Phy. Sci., 23(1), 
pp. 71-90, 1989. 

[15] S.K. Gupta, Pankaj, “Thermo Elastic-plastic Transition in a 
thin rotating Disc with inclusion”, Thermal Science Scientific 
Journal, 11(1), pp.103-118, 2007. 

[16] B.N. Borah,“ Thermo Elastic-plastic transition”, 
Contemporary Mathematics, vol. 379, pp. 93-111, 2005.   

[17] S. Sharma, “Elastic-plastic Transition of Non-homogeneous 
Thick-walled Circular Cylinder under Internal Pressure”, 
Def. Sc. Journal, vol. 54, No. 2, 2004. 

[18] S. Sharma, M. Sahni, “Creep Transition of Transversely 
Isotropic Thick-walled Rotating Cylinder”, Adv. Theor. Appl. 
Mech., vol. 1(7), pp. 315-325, 2008. 

[19] Pankaj, Sonia R. Bansal, “Elastic-Plastic Transition in a Thin 
Rotating Disc with Inclusion”, Proceedings of World 
Academy of Science, Engineering and Technology, Vol. 28, 
April 2008. 

[20] U. venuG && , “Elastic-plastic rotating disk with rigid 
inclusion”, Mech. Struct. and Mach., vol. 27, pp. 117-128, 
1999. 

 
Dr Sanjeev Sharma obtained his Ph. D. from Himachal Pradesh 
University, Shimla in 2000. Presently, he is working as Assistant 
Professor in the Department of Mathematics, Jaypee Institute of 
Information Technology University, Noida, India. His area of 
research include: Applied mathematics, solid mechanics, elastic-
plastic and creep theory. He has published fourteen research 
papers in national/ international journals and presented four 
research papers in national/ international conferences. 
 
 

 
Dr. Manoj Sahni obtained his Ph. D. from JIIT Noida, India. 
Presently, he is working as Lecturer in the Department of 
Mathematics, Jaypee Institute of Information Technology 
University (JIIT), Noida. His area of research includes Applied 
Mathematics, Elastic-plastic and creep theory. He has published 
six research papers in international/ national journals and three 
research papers in national/ international conferences. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


