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Abstract— Power Spectral Density (PSD) of quasi-stationary
processes can be efficiently estimated using the short time Fourier
series (STFT). In this paper, an algorithm has been proposed that 
computes the PSD of quasi-stationary process efficiently using off-
line autoregressive model order estimation algorithm, recursive 
parameter estimation technique and modified sliding window discrete 
Fourier Transform algorithm. The main difference in this algorithm
and STFT is that the sliding window (SW) and window for spectral 
estimation (WSA) are separately defined. WSA is updated and its 
PSD is computed only when change in statistics is detected in the 
SW. The computational complexity of the proposed algorithm is
found to be lesser than that for standard STFT technique. 

Keywords— Power Spectral Density (PSD), quasi-stationary
time series, short time Fourier Transform, Sliding window DFT.

I. INTRODUCTION

ime-frequency analysis plays a central role in signal
analysis. A global Fourier transform of a time signal is of

little practical value as it looses the time aspect, if any, of the
signal. Quasi-stationary signals which are evolving with time
in an unpredictable way (like a speech signal or a biomedical
signal) necessitate the notion of frequency analysis that keeps
track of the time aspect of the signal as well [1, 5].

Short Time Fourier transform (STFT) proposed by Gabor in
1946 provide a means to capture the time information while
computing the PSD [2, 3]. It is based upon a sliding window
of a pre-selected fixed data length that slides with the
occurrence of each new sample point of the time series [1]. 
The discrete Fourier transform (DFT) of this window is
computed after each sample time shift. STFT is, thus, 
classified as a fixed resolution method for time-frequency
analysis.

Maximum Entropy Method (MEM) [5, 7, 9] for estimating
the PSD provides an alternate method for computing the PSD 
of a set of time series. Frequency resolution of MEM PSD is
better than the periodogram approach using DFT. However, 
PSD through MEM of a sliding window, to keep track of time,
for non-stationary signals has not attracted much attention in
literature [5].
    MEM requires the identification of the underlying
autoregressive (AR) process governing the time series.
Identification of the AR process can be done using offline
techniques or recursive techniques. Offline techniques are 
found to be more suitable for estimating the AR model order. 

The AR parameters can be estimated offline or recursively, as 
the situation demands.
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In this paper, an algorithm for efficient computation of 
quasi-stationary time series is presented. This involves
computation of the DFT of a window, as in STFT, which
slides with time after occurrence of each new sample point. 
This algorithm utilizes offline forward backward linear
predictor algorithm of Marple [6] for estimating the model
order, Recursive Least Squares (RLS) [8] for estimating the 
AR parameters and the modified recursive sliding window
DFT algorithm for computing the DFT. The modified sliding
window DFT is based on a Window for Spectral Analysis

(WSA) concept. The WSA is the window that records only
those samples that affect the PSD due to AR model variability
in a quasi-stationary process. Thus, the PSD is computed only
for the data points that affect the PSD, skipping the
unnecessary samples (implying samples that do not affect the
PSD). This results in reduced computational complexity of the
algorithm.

Recently an algorithm that computes the DFT of the sliding 
window recursively, for the purpose of computing the STFT 
has been published [4]. This algorithm has been modified by
inclusion of sample skipping concept. The samples that do not
affect the PSD are skipped and not included in the WSA.

Section II of this paper introduces the modified sliding
window DFT scheme. Section III describes the new algorithm
that proposes the efficient procedure for determining the PSD 
of a quasi-stationary process. Section IV presents the
evaluation of the computational complexity of the proposed 
algorithm as compared to the existing techniques. Simulation
results have been presented in section V.

II. MODIFIED SLIDING WINDOW DFT

Consider a quasi-stationary time series of length N. A 
stationary segment of length M is identified as the time
window where M < N. In STFT, the DFT of the window
length M is taken and this window then slides on to the next
sample as it occurs. This process of sliding the fixed length
window causes inclusion of the new sample and exclusion of
the first sample, after sliding, from the window.

Assume that the window at some fixed instant of time has 
data samples that may be represented by the vector

1y .

Assume that the DFT of this vector is given by
1Y . On arrival

of the next sample in the data stream, the window is moved
causing inclusion of the new sample but exclusion of the first
element from the data vector. In this case the updated sample
vector would be represented by

2y and its corresponding DFT 

by
2Y .

E. Jacobsen and R. Lyons [4] derived a recursive formula
for computing the DFT of the sliding window in an efficient

T
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manner. This recursive formulation is given by,

01
/2

2 ][][ xxkYekY M

Mkj      (1)

where xo is the element excluded by the sliding window and 
xM is the element introduced in the sliding window.

We propose the following postulate for improving the
computational efficiency further for calculating the STFT of a 
time series representing a quasi-stationary process. 

Postulate: The DFT Y2[k] in equation (1) would remain
unchanged from Y1[k] if the included sample xM forms part of 
the same stationary process that constituted the data samples

vector 1y .

Proof: Since by definition of the wide sense stationary
process (WSS) the autocorrelation function is independent of
time [10]. Thus it implies the proof of the above postulate.�

Thus, the sliding window recursive formula of (1) may be
applied on a quasi-stationary time series by skipping the
computation of the DFT until a change in the statistics is 
detected for the time series under study. The recursive
modified sliding window DFT may be represented by (2), 

01
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2 ][][ xxkYekY qM

Mkj      (2)

Where xM+q represents the sample, which heralds the change
in the statistics of the stationary time series and consequently
resulting the computational saving and q is a positive integer.

III. ALGORITHM

The proposed algorithm employs two windows. One is the
sliding window (SW) which slides sample by sample (as is
usual in STFT) and other is the window for spectral analysis
(WSA). DFT of the SW is calculated at its initial location
along with the order of the AR model using Marple’s
algorithm [6]. RLS is then used to find out the AR parameters.
Now as SW slides a sample, the next sample is predicted
using the AR parameters obtained from RLS. The estimated
sample is compared with the actual sample value and the error
is compared with a preset threshold. Whenever the error 
exceeds the specified threshold, Marple’s algorithm is invoked 
for computation of the revised AR model order.  The new 
model order may or may not be different from the previous.
However, the underlying AR model is updated. This implies
change in the statistics of the time series and requirement for
updating the spectrum. The WSA is updated by the
introduction of the sample that heralds the change in the
underlying process. The updated spectrum of the WSA is
computed employing the sliding window based DFT
algorithm and this constitutes the updated PSD. Thus the
spectrum is updated only when the underlying process 
indicates a change resulting in skipping of samples in the
formulation of WSA that do not constitute any change in the
underlying process. 

The whole algorithm can be briefly described by the pseudo
code given below.

1. Formulate first SW with the first M samples. 

2. Set WSA to first SW.

3. Estimate order using Marple’s algorithm for SW. 

4. Compute DFT using FFT for WSA. 

5. Estimate AR parameters from the M samples of SW 

using RLS algorithm.

6. Forecast the M+1st sample from the AR model

developed for SW. 

7. Update the SW by inclusion of the M+1st and removal

of 1st sample. 

8. Compare the M+1st estimated sample with the true

sample.

• If error is greater than a threshold

• Then update WSA by inclusion of the new true

sample. Set Flag.

• Else WSA is not updated. Reset Flag.

9. If Flag is set

• Then recalculate order using the Marple’s

algorithm on SW 

• If order has changed from the previous order

• Then re-initialize the RLS algorithm for new

order and apply to complete current SW for

estimation of the AR parameters.

• Else estimate the AR parameters using the RLS 

with previous parameters and covariance matrix

estimates.

• Compute the DFT of WSA using the sliding DFT 

using (2).
• Reset Flag.

10. Else continue from step 6.

Determination of Threshold: The value of threshold can be
adjusted from the apriori knowledge of the system and how 
much the error in prediction can be tolerated. So this is a 
flexible parameter in the algorithm depending on the apriori
knowledge.

IV. COMPLEXITY COMPARISON

Let N be the size of the quasi-stationary signal and let M be 
the size of the sliding window within the signal. Assume the
order of the AR model representing the stationary sliding
window signal to be P. Also assume K as representing the 
number of times the error between the original signal sample
and the forecast sample crosses the threshold level. The 
complexity of algorithms being used in the proposed
algorithm is shown in Table 1. The asymptotic complexity of 
Marple’s algorithm is O(NMP + NP2), and of RLS is O(NP2),
and of FFT is O(NMlog2M). The same for sliding DFT is
O(NM).

The complexity of the proposed algorithm is computed as
under.

In the initialization step, Marple’s Algorithm, RLS and
FFT are applied once.
After initialization, Marple’s Algorithm, RLS and
sliding DFT are executed K times.
Each forecast requires P multiplications and P-1
additions. This step is carried out N-M times.

Since K << N, the asymptotic complexity of the proposed
algorithm becomes O(KP2+KM) which is lower than the
complexity of algorithms described in Table 1. This
observation is especially important as the sliding DFT [4]
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proposes an efficient recursive method for STFT computation.
The algorithm proposed in this paper improves upon the
efficiency for computing the PSD of quasi-stationary
processes.

Table 1 Complexity of Algorithms for one Iteration

V. SIMULATION RESULTS

The threshold was set to 10-4 for all the simulations.
Suppose a signal

)(10)10002sin()5002sin()( 0ttttty

is sampled at 8 kHz. It is a quasi-stationary signal in the sense
that a delta function occurs at t0 = 0.192 m sec implying
1536th sample. Assume the SW to consist of 128 samples.
The proposed algorithm is applied to the samples of y(t).
Figure 1(a) depicts the PSD when WSA contains samples 17
to 143 (a total of 127 samples) and sample 1536 (to complete
128 samples). This PSD is identical to the one that is obtained
for samples 1408 to 1536.  Figure 1(b) shows the same PSD
with added white Gaussian noise (SNR = 0.1648 dB). Again
the PSD is identical to un-skipped SW PSD. 

Consider another signal
)10002sin()5002sin()( tttf

sampled at 8 kHz. SW size is taken as 64 samples. Figure 2
shows the power spectral density estimate of the last SW and
WSA, which in this case is the first SW because the signal is 
stationary. It is observed that WSA presents better results.

Now consider the third signal [9]
)425.72sin()( ttf

sampled at 100 Hz. Window size was 128 samples. Figure 3
shows the PSD of the last window SW along with the PSD of
WSA (the first SW). From this figure, again it is observed that
WSA presents better results.

ACKNOWLEDGMENT

Higher Education Commission (HEC), Islamabad, Pakistan,

funded this research work. Their support is gratefully
acknowledged.

Algorith

m

# of Real

Mult.

# of 

Real

Div.

# of 

Addition

s

Remarks

Marple’s
[7]

MP + 
8P2 + M
+ 7P - 8 

5P+3 MP + 9P2

+ 2M + 
25P -3 

Estimates
P and AR
Parameter

s.

RLS 4P2 + 4P 2P 2P+2 Estimates
AR para-
meters for 
known P.

FFT 4Mlog2M 4Mlog2M

Sliding
DFT

4M 4M

Figure 1. Plots for Normalized PSD. (a) No noise case. 
(b) SNR 0.1648 dBs

Figure 2.  shows the PDS plot for WSA and * shows 
the PDS plot for last SW for example 1. 
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Figure 3.  shows the PDS plot for WSA and * shows 
the PDS plot for last SW for example 2. 
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