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Efficient Semi-Systolic Finite Field Multiplier
Using Redundant Basis

Hyun-Ho Lee, Kee-Won Kim

Abstract—The arithmetic operations over GF (2m) have been
extensively used in error correcting codes and public-key
cryptography schemes. Finite field arithmetic includes addition,
multiplication, division and inversion operations. Addition is very
simple and can be implemented with an extremely simple circuit.
The other operations are much more complex. The multiplication
is the most important for cryptosystems, such as the elliptic
curve cryptosystem, since computing exponentiation, division, and
computing multiplicative inverse can be performed by computing
multiplication iteratively. In this paper, we present a parallel
computation algorithm that operates Montgomery multiplication over
finite field using redundant basis. Also, based on the multiplication
algorithm, we present an efficient semi-systolic multiplier over finite
field. The multiplier has less space and time complexities compared
to related multipliers. As compared to the corresponding existing
structures, the multiplier saves at least 5% area, 50% time, and 53%
area-time (AT) complexity. Accordingly, it is well suited for VLSI
implementation and can be easily applied as a basic component for
computing complex operations over finite field, such as inversion and
division operation.

Keywords—Finite field, Montgomery multiplication, systolic array,
cryptography.

I. INTRODUCTION

THE finite field arithmetic is important in error correcting

codes and public-key cryptography schemes [1], [2].

Particularly, public-key cryptography schemes, such as elliptic

and hyper-elliptic curve cryptosystems [3], require finite field

arithmetic operations to be performed. Among the arithmetic

operations over finite fields, the multiplication is an important

operation. This is because the time-consuming operations such

as exponentiation, division, and multiplicative inversion can

be decomposed into repeated multiplications. Therefore, we

require an efficient multiplication algorithm and architecture

design of a finite field multiplier.

Montgomery multiplication algorithm has been proposed for

the fast modular integer multiplication [4]. The Montgomery

multiplication was successfully adapted to GF (2m) in [5]. The

Montgomery multiplication over GF (2m) is a very efficient

solution for the design of a fast architecture and VLSI

implementation [6]-[13].

Many semi-systolic and systolic multipliers over GF (2m)
have been developed [10]-[16]. In 2010, Huang et al. [14]

proposed a semi-systolic polynomial basis multiplier over

GF (2m) to reduce both area and time complexities. Also
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they proposed the semi-systolic polynomial basis multipliers

with concurrent error detection and correction capability. In

2013, Kim and Kim [15] proposed an area-efficient multiplier

than multipliers proposed in [14]. In 2014, Choi and Lee

[11] proposed a low complexity semi-systolic multiplier

based on the redundant basis representation of the finite

field elements. Recently, Kim and Jeon [12] proposed an

efficient semi-systolic multiplier for finite field. Although their

multiplier is efficient and has the lower area and time than [11],

it has a throughput rate of one result per two clock cycles. In

this paper, we present a semi-systolic multiplier over finite

field using redundant representation for reduction of area and

time complexity of typical architectures.

II. PRELIMINARIES

In this section, we briefly review the Montgomery

multiplication, the redundant presentation, and the redundant

basis multiplication over finite fields.

A. Montgomery Multiplication over Finite Fields
The Montgomery multiplication algorithm is an efficient

method for computing modular multiplication and squaring

required for exponentiation [4]. A binary Montgomery

multiplication algorithm over the bit-level is introduced by Koc

et al. [5]. Thereafter, various multipliers over the finite field

have been proposed based on the Montgomery multiplication

[6]-[13].
Let α and β be two elements of GF (2m), then we define

δ = α·β mod G, where G denotes the irreducible polynomial.

Also, let A and B be two Montgomery residues, then they are

defined as A = α · r mod G and B = β · r mod G, where

a Montgomery factor, r and an irreducible polynomial, G are

relatively prime, and gcd(r,G) = 1. Then, the Montgomery

multiplication algorithm over GF (2m) can be formulated as

P = A ·B · r−1 mod G, (1)

where r−1 is the inverse of r modulo G, and r·r−1+G·G′ = 1.

Then, (1) can be expressed as:

P = (α · r) · (β · r) · r−1 mod G = δ · r mod G. (2)

It means that P is the Montgomery residue of δ. This makes

it possible to convert the operands to Montgomery residues

once at the beginning, and then, do several consecutive

multiplications/squarings, and convert the final result to the

original representation. The final conversion is a multiplication

by r−1, i.e., δ = P · r−1 mod G. The polynomial r plays an

important role in the complexity of the algorithm as we need

to do modulo r multiplication and a final division by r.
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B. Redundant Presentation

Let ξ be the nth primitive root of unity in some extension

field of GF (2). The splitting field of ξ is called the nth

cyclotomic field and denoted by GF (2n). Elements in GF (2n)
can be represented in the form

A = a0 + a1ξ + a2ξ
2 + · · ·+ an−1ξ

n−1, (3)

where aj ∈ GF (2) for j = 0, 1, . . . , n− 1.

It has been shown that GF (2m) is contained in GF (2n)
if and only if n is an odd positive integer and m divides the

multiplicative order of 2 mod n [17]. For a given GF (2m),
we are particularly interested in GF (2n) with the minimal

value of n such that GF (2m) can be embedded in GF (2n).
Obviously, field element A ∈ GF (2m) can also be represented

with (3). Since 1 + ξ + ξ2 + · · · + ξn−1 = 0, the

representation of A is not unique. For example, the two

n-tuples (a0, a1, · · · , an−1) and (1+a0, 1+a1, · · · , 1+an−1)
represent the same element A. The set {1, ξ, ξ2, · · · , ξn−1} is

denoted as the redundant basis (RB) for GF (2m) [18], [19].

Also note that the elements of an RB form a cyclic group of

order n and

ξ · ξi =
{

ξi+1 i �= n− 1,
1 i = n− 1.

(4)

C. Redundant Basis Multiplication

Consider the redundant basis {1, ξ, ξ2, · · · , ξn−1} in

GF (2m). Let field elements A,B ∈ GF (2m) to be

represented with respect to the redundant basis as

A =
n−1∑
j=0

ajξ
j and B =

n−1∑
j=0

bjξ
j (5)

where aj , bj ∈ GF (2) for j = 0, 1, . . . , n − 1. Note that

n ≥ m+ 1 and ξn = 1. Then it follows

B · ξi = b0ξ
i+b1ξ

i+1+· · ·+bn−i+· · ·+bn−1ξ
i−1

=

n−1∑
j=0

b〈j−i〉ξj (6)

where 〈x〉 denotes that x is to be reduced modulo n. Then,

the product of field elements A and B can be given by

A ·B =
n−1∑
i=0

ai(B · ξi) =
n−1∑
j=0

[
n−1∑
i=0

aib〈j−i〉]ξj . (7)

III. THE PROPOSED MULTIPLIER USING RB OVER FINITE

FIELDS

In this section, we present a Montgomery multiplication

algorithm using the redundant basis and a multiplier based

on the proposed algorithm.

A. The Multiplication Algorithm

Let A, B ∈ GF (2m) be represented with respect to the RB

{1, ξ, ξ2, · · · , ξn−1} as (5). Then, the product P = A · B ·
r−1 mod G is obtained as

P =

n−1∑
j=0

pjξ
j , (8)

where pj =
∑n−1

i=0 aib〈j−i〉 and 〈x〉 denotes x mod n. The

modular reduction and squaring operations are more efficient

over the RB than in other bases.

In order to reduce time complexity based on the property

of parallel architecture, we choose the Montgomery factor,

r = ξk, where k = �n/2�. Then, the MM over GF (2m) can

be formulated as

P = A ·B · r−1 = A ·B · ξ−k mod G. (9)

Then, P = A ·B · ξ−k mod G can be expressed as:

P =
[
b0Aξ−k+b1Aξ

−k+1+· · ·+bk−1Aξ−1

+bkA+· · ·+bn−2Aξk−1+bn−1Aξk
]
mod G.(10)

In (10), we can see that P can be divided into two parts.

One is based on the negative powers of ξ and the other is

based on the positive powers of ξ. P can be denoted by

P = S + T, (11)

where

S =
k−1∑
j=0

bjAξ
−k+j (12)

and

T =
n−1∑
j=k

bjAξ−k+j . (13)

In finite fields based on RB, we consider the multiplications

of A by ξ and A by ξ−1, respectively. Since ξn = 1 and

ξ−1 = ξn−1,

A · ξ =
n−1∑
j=0

ajξ
j+1 =

n−1∑
j=0

a〈j−1〉ξj (14)

and

A · ξ−1 =
n−1∑
j=0

ajξ
j−1 =

n−1∑
j=0

a〈j+1〉ξj . (15)

Let Ā(i) = A · ξ−i and A(i) = A · ξi. Then Ā(i) and A(i)

can be expressed as

Ā(i) = A · ξ−i =
n−1∑
j=0

ā
(i)
j ξj (16)

and

A(i) = A · ξi =
n−1∑
j=0

a
(i)
j ξj , (17)

where Ā(0) = A(0) = A.
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Ā(i) and A(i) are rewritten as

Ā(i) = Ā(i−1) · ξ−1 =
n−1∑
j=0

ā
(i−1)
〈j+1〉ξ

j (18)

and

A(i) = A(i−1) · ξ =
n−1∑
j=0

a
(i−1)
〈j−1〉ξ

j . (19)

Using Ā(i) and A(i), S and T are represented by the

following equations. For deriving the identical structure, we

add zĀ(0) to S, where z = 0.

S =
k−1∑
j=0

bjAξ
−k+j =

k−1∑
j=0

bjĀ
(k−j) + zĀ(0) (20)

and

T =
n−1∑
j=k

bjAξ
−k+j =

k∑
j=0

bk+jA
(j). (21)

From (20) and (21), the recurrence equations of S and T
can be formulated by the following equations, where S(0) =
T (0) = 0.

S(i)=

{
S(i−1)+zĀ(i−1) , for i = 1
S(i−1)+bk−i+1Ā

(i−1) , for 2≤ i ≤ k + 1,
(22)

T (i) = T (i−1) + bk+i−1A
(i−1), for 1 ≤ i ≤ k + 1, (23)

Two sets of equations {(18), (22)} and {(19), (23)} can be

simultaneously computed because there is no data dependency

between computations of {Ā(i), S(i)} and {A(i), T (i)}. After

computing S(k+1) and T (k+1), the product of A and B is

obtained by computing P = S(k+1) + T (k+1). By above

equations, we can derive Algorithm 1 for the Montgomery

multiplication using redundant basis over finite fields.

Algorithm 1. The Proposed Montgomery Multiplication Using RB

Input : A,B
Output : P = A ·B · r−1

1 Ā(0) ← A, A(0) ← A

2 S(0) ← 0, T (0) ← 0
3 for i = 1 to k + 1 do
4 for j = 0 to n− 1 do
5 in parallel do:

6 ā
(i)
j ← ā

(i−1)
〈j+1〉

7 a
(i)
j ← a

(i−1)
〈j−1〉

8 if i = 1 then

9 s
(i)
j ← s

(i−1)
j + zā

(i−1)
j

10 else

11 s
(i)
j ← s

(i−1)
j + bk−i+1ā

(i−1)
j

12 t
(i)
j ← t

(i−1)
j + bk+i−1a

(i−1)
j

13 end do
14 end for
15 end for

16 P ← S(k+1) + T (k+1)

B. The Proposed Multiplier

GF (24) can be embedded in the minimal cyclotomic field

GF (25). Based on the proposed Algorithm 1, we propose

a semi-systolic multiplier using the redundant basis over

GF (24) as shown in Fig. 1, where “�” denotes a 1-bit latch.

The detailed circuit of W
(i)
j cells in Fig. 1 is depicted in

Fig. 2. The proposed multiplier over GF (2m) is composed of

n×(k+1)W
(i)
j cells and 2n XOR gates, where 0 ≤ j ≤ n−1,

1 ≤ i ≤ k+1, and k = �n/2�. As shown in Fig. 2, each W
(i)
j

cell employs two 2-input AND gates and two 2-input XOR

gates in order to simultaneously compute the coefficients of

S(i) and T (i) in (22) and (23), respectively.

IV. COMPLEXITY ANALYSIS

For a comparison of the time and area complexity, we

can use practical integrated circuits. Therefore, we utilize the

“SAMSUNG STD 150 0.13m 1.2V CMOS Standard Cell

Library”. Based on this library, we estimated the time and

area complexities of the proposed and the related multipliers.

As discussed in detail in [11], we adopt that AAND2 = 6.68,

AXOR2 = 12.00, and ALATCH1 = 16.00, where AGATEn

denotes transistor count of an n-input gate. Also, for a

comparison of time complexity, we can use the following

assumptions, TAND2 = 0.094ns, TXOR2 = 0.167ns,

and TLATCH1 = 0.157ns, where TGATEn denotes the

propagation delay of an n-input gate.

A circuit comparison between the proposed and the related

multipliers is given in Table I. The results show that the

AT complexity of the proposed semi-systolic multiplier is

improved by approximately 82%, 79%, 71%, and 53%

compared to the existing multipliers of Lee et al. [16], Chiou

et al. [13], Huang [14], and Choi-Lee [11], respectively.

V. CONCLUSION

In this paper, we have presented an efficient semi-systolic

architecture for Montgomery multiplication over finite fields.

We induced an efficient algorithm which is highly suitable

for the design of parallel pipelined structures. In complexity

comparison, our architecture reduced both area and time

complexities. Also, the AT complexity of the proposed

multiplier is half as compared to Choi-Lee’s multiplier [11].

The simplicity, regularity, and modularity of our proposed

multiplier allow for easy extension and make this design

for implementation using VLSI technologies, particularly for

cryptographic applications.
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Fig. 1 The proposed multiplier in GF (24)

TABLE I
COMPLEXITY COMPARISON OF SEMI-SYSTOLIC MULTIPLIERS

Multipliers Lee et al. [16] Chiou et al. [13] Huang et al. [14] Choi-Lee [11] Fig.1

# cells m2 m2 +m m2 m2 +m 0.5m2 + 1.5m+ 1
Throughput 1 1 1 1 1
Latency m m+ 1 m m+ 1 0.5m+ 2
Area complexity
AND2 2m2 2m2 + 2m 2m2 m2 + 2m+ 1 m2 + 3m+ 2
XOR2 2m2 0 2m2 m2 + 2m+ 1 m2 + 4m+ 3
XOR3 0 m2 +m 0 0 0
Latch 3.5m2−0.5m 3.5m2+3.5m 3.5m2−0.5m 3.5m2+3.5m+2 2.25m2+9.5m+8
Total transistors

93.36m2−8m
93.36m2

93.36m2−8m
74.68m2 54.68m2+

+93.36m +93.36m+3 220.04m+177.36
Time complexity
Cell delay 0.679 0.585 0.418 0.324 0.418
Total delay 0.679m 0.585m+ 0.585 0.418m 0.324m+ 0.324 0.209m+ 0.836
AT complexity 63.48m3 54.62m3 39.02m3 24.20m3 11.43m3

−5.44m2 +109.24m2 −3.34m2 +54.44m2 +91.70m2

+54.62m +31.22m+0.97 +221.02m+ 148.27
Improvement of Fig.1
Area 41% 41% 41% 27%
Time 69% 64% 50% 35%
AT 82% 79% 71% 53%
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Fig. 2 The circuit of the W
(i)
j cell

ACKNOWLEDGMENT

This research was supported by Basic Science

Research Program through the National Research

Foundation of Korea(NRF) funded by the Ministry of

Education(NRF-2015R1D1A1A01059739).

REFERENCES

[1] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography, Boca Raton, FL, CRC Press, 1996.

[2] R. E. Blahut, Theory and Practice of Error Control Codes, Reading, MA,
Addison-Wesley, 1983.

[3] N. Kobliz, “Elliptic Curve Cryptography,” Math. Computation, vol. 48,
no. 177, pp. 203-209, Jan. 1987.

[4] P. Montgomery, “Modular multiplication without trial division,” Math.
Comput., vol. 44, no. 170, pp. 519-521, Apr. 1985.

[5] C. Koc, and T. Acar, “Montgomery multiplication in GF (2k),” Des.
Codes Cryptogr., vol. 14, no. 1, pp. 57-69, Apr. 1998.

[6] C. Y. Lee, J. S. Horng, and I. C. Jou, “Low-complexity bit-parallel systolic
Montgomery multipliers for special classes of GF (2m),” IEEE Trans.
Comput., vol. 54, no. 9, pp. 1061-1070, Sep. 2005.

[7] A. Hariri and A. Reyhani-Masoleh, “Bit-serial and bit-parallel
Montgomery multiplication and squaring over GF (2m),” IEEE Trans.
Comput., vol. 58, no. 10, pp. 1332-45, Oct. 2009.

[8] A. Hariri and A. Reyhani-Masoleh, “Concurrent error detection in
Montgomery multiplication over binary extension fields,” IEEE Trans.
Comput., vol. 60, no. 9, pp. 1341-53, Sep. 2011.

[9] K. W. Kim and W. J. Lee, “Efficient cellular automata based Montgomery
AB2 multipliers over GF (2m),” IETE Technical Review, vol. 31, no. 1,
pp. 92-102, May 2014.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1740

[10] K. W. Kim and J. C. Jeon, “Polynomial basis multiplier using cellular
systolic architecture,” IETE Journal of Research, vol. 60, no. 2, pp.
194-199, Jun. 2014.

[11] S. H. Choi and K. J. Lee, “Low complexity semisystolic multiplication
architecture over GF (2m),” IEICE Electron. Express, vol. 11, no. 20,
pp. 20140713, Oct. 2014.

[12] K. W. Kim and J. C. Jeon, “A semi-systolic Montgomery multiplier over
GF (2m),” IEICE Electonics Express, vol. 12, no. 21, pp. 20150769, Nov.
2015.

[13] C. W. Chiou, C. Y. Lee, A. W. Deng, and J. M. Lin, “Concurrent error
detection in Montgomery multiplication over GF (2m),” IEICE Trans.
Fund. Electron. Commun. Comput. Sci., vol. E89-A, no. 2, pp. 566-574,
Feb. 2006.

[14] W.T. Huang, C.H. Chang, C.W. Chiou and F.H. Chou, “Concurrent error
detection and correction in a polynomial basis multiplier over GF (2m),”
IET Inf. Secur., vol. 4, no. 3, p. 111-124, Sep. 2010.

[15] K. W. Kim and S. H. Kim, “A low latency semi-systolic multiplier over
GF (2m),” IEICE Electron. Express, vol. 10, no. 13, pp. 20130354, July
2013.

[16] C. Y. Lee, C. W. Chiou and J. M. Lin, “Concurrent error detection in
a polynomial basis multiplier over GF (2m),” J. Electron. Test., vol. 22,
no. 2, pp. 143-150, Apr. 2006.

[17] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their
Applications. Cambridge Univ. Press, 1986.

[18] H. Wu, M.A. Hasan, I.F. Blake and S. Gao, “Finite field multiplier
using redundant representation,” IEEE Trans. Comput. Vol.51, No.11,
pp.1306-1316, 2002.

[19] A. H. Namin, H. Wu and M. Ahmadi, “A New Finite Field Multiplier
Using Redundant Representation”, IEEE Trans. Computers, Vol.57, No.5,
pp. 716-720, May 2008.


