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 
Abstract—This paper deals with the problem of using antenna 

sensors for adaptive beamforming in the presence of random steering 
mismatch. We present an efficient adaptive array beamformer with 
robustness to deal with the considered problem. The robustness of the 
proposed beamformer comes from the efficient designation of the 
steering vector. Using the received array data vector, we construct an 
appropriate correlation matrix associated with the received array data 
vector and a correlation matrix associated with signal sources. Then, 
the eigenvector associated with the largest eigenvalue of the 
constructed signal correlation matrix is designated as an appropriate 
estimate of the steering vector. Finally, the adaptive weight vector 
required for adaptive beamforming is obtained by using the estimated 
steering vector and the constructed correlation matrix of the array data 
vector. Simulation results confirm the effectiveness of the proposed 
method. 

 
Keywords—Adaptive beamforming, antenna array, linearly 

constrained minimum variance, robustness, steering vector. 

I. INTRODUCTION 

DAPTIVE beamforming using antenna array of sensors is 
useful in the process of adaptively detecting and 

preserving the presence of the desired signal, while suppressing 
the interference and the background noise. For conventional 
adaptive array beamforming, we require the priori information 
of either the impinging direction or the waveform of the desired 
signal to adapt the weights [1], [2]. The adaptive weights of an 
antenna array beamformer under a steered-beam constraint are 
calculated by minimizing the output power of the beamformer 
subject to the constraint that forces the beamformer to make a 
constant response in the steering direction. Hence, the 
performance of the beamformer is very sensitive to the 
accuracy of the steering operation. In practice, we may not 
know the true direction vector of the desired signal in some 
applications. For example, it is somewhat difficult to obtain the 
exact direction vector for the desired signal in land mobile- 
cellular radio systems. It has been shown in [2]-[6] that even a 
small mismatch between the true direction vector of the desired 
signal and the steering vector deteriorates the effectiveness of a 
steered-beam beamformer. 

In the literature, research endeavor has been devoted to 
tackle the adaptive array beamforming problem due to random 
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steering mismatch. Several robust methods were recently 
developed by imposing either a spherical or an ellipsoidal 
uncertainty constraint directly on the steering vector for the 
conventional linearly constrained minimum variance (LCMV) 
beamforming [7]-[10]. The effectiveness of the existing robust 
techniques is due to the diagonal loading (DL) property. 
However, the above DL based techniques will demonstrate 
their capabilities against array steering vector errors only if a 
DL factor is appropriately decided. But, how to decide the 
optimal DL factor is still an open question. In addition, finding 
the optimal loading value under a given level of uncertainty 
constraint or a desired level of robustness is usually not an easy 
task. Unlike the conventional DL techniques suffering from the 
problem of choosing an appropriate loading factor, a fully 
data-dependent loading technique was presented by [11] to 
avoid the trade-off suffered by the conventional DL techniques. 
Instead of determining the optimal loading factor, this 
technique generates an appropriate loading matrix directly from 
the sample correlation matrix of the received array data vector. 
Simulation results using this technique to deal with the problem 
of random steering mismatch were also presented in [11]. 
Recently, a Bayesian approach was presented in [12] to deal 
with the situation where the steering vector is assumed to be a 
random vector under a prior distribution. However, this 
approach relies on the assumptions of a Bingham prior 
distribution for the steering vector and an inverse Wishart prior 
distribution for the interference covariance matrix. Moreover, a 
robust technique against the random steering mismatch was 
presented in [13]. This technique relies on a reconstruction the 
interference-plus-noise covariance matrix first, and then an 
optimization scheme to estimate the direction vector of the 
desired signal. 

In this paper, we present an efficient adaptive array 
beamforming technique to deal with the problem due to the 
random steering mismatch. Based on the reconstruction of the 
correlation matrices associated with the data vector and the 
signal sources received by an antenna array, we first construct a 
correlation matrix associated with the array data vector. Then, 
an efficient procedure is proposed to find an appropriate 
estimate of the steering vector. Using the reconstructed 
correlation matrix and the estimated steering vector, we finally 
find the weight vector required for performing adaptive 
beamforming according to the LCMV criteria [14]. The novelty 
of the proposed technique is that it does not require both of 
much prior information like [12], as well as complicated 
optimization procedure like [13]. Moreover, we observe from 
the simulation results that the proposed technique outperforms 
the existing techniques in additional to its easiness of 
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implementation. 
This paper is organized as follows. Section II presents the 

brief theory of adaptive array beamforming based on the 
LCMV criteria. In Section III, we present the problem 
formation and present an efficient robust technique based on 
two efficient steps. One is for steering vector estimation. The 
other is for the reconstruction of the correlation matrix related 
to array data vector. Section IV provides several simulation 
results for confirming the effectiveness of the proposed 
technique. Finally, we conclude the paper in Section V. 

II. ADAPTIVE BEAMFORMING USING UNIFORM LINEAR ARRAY 

Consider that there are J+1 far-field signal sources including 
a desired signal and J interferers impinging on an M-element 
uniform linear array (ULA). The data vector x(t) received by 
the ULA can be expressed as follows: 

 
x(t) = As(t) + n(t),         (1) 

 
where s(t) = [ sd(t) s1(t) ….. sJ(t) ]T contains the complex 
waveforms sd(t) of the desired signal impinging on the ULA 
with direction angle d  off array broadside with power = 2

s  

and sj(t) of the jth interferer with direction angle j  and power 

= 2
j , j = 1, 2, …, J, respectively, A = [ )( da )( 1a ….. 

)( Ja ] contains the direction vectors )( da  of the desired 

signal and )( ja  of the jth interferer, j = 1, 2, …., J, 

respectively, and n(t) = [ n1(t) n2(t) ….. nM(t) ]T represents the 
spatially white background noise vector. The superscript T 
denotes transpose operation. Let s(t) and n(t) be uncorrelated, 
the M × M ensemble correlation matrix of x(t) is given by 
 

RBxx = E{x(t)x(t)H} = ARsA
H +σn

2
PIM ,      (2) 

 
where the superscript H denotes complex conjugate transpose, 
Rss = E{s(t)s(t)H} is the signal correlation matrix, σn

2 is the 
noise power, and IM is the identity matrix with size M×M. Let 
the ULA use a weight vector w = [w1, w2, ….. wM ]T for 
processing the received data vector x(t) to produce the array 
output signal y(t) = wHx(t). According to the linearly 
constrained minimum variance (LCMV) criterion, the adaptive 
beamformer minimizes the power of the output signal y(t) 
subject to some preset constraints. Assume that the first signal 
with direction vector )( da is designated as the desired signal. 

The adaptive beamforming problem is shown as follows [14]: 
 

Minimize wHRxxw 
Subject to )( da

Hw = 1.       (3) 

 
The optimal weight vector for the solution of the 

optimization problem (4) is given by 
 

w = Rxx
-1

)( da [ )( da
HRxx

-1
)( da ]-1.     (4) 

 
It has been shown in the literature [7]-[10] that using the 

weight vector given by (4) is very effective for adaptive array 
beamforming without any imperfections. However, it cannot 
mitigate the performance degradation due to even a small 
imperfection in real environments [7]-[10]. 

III. PROBLEM FORMULATION AND PROPOSED ROBUST 

TECHNIQUE 

A. Problem Formulation 

In practice, Rxx is unavailable and the knowledge of )( da  

may be inaccurate. A sample matrix inversion (SMI) approach 
is commonly used to solve the constrained minimization 
problem of (3) by using a sample correlation matrix instead of 
the ensemble one. Under the actual steering vector a , the 
solution of (3) can be expressed as: 

 

wsmi = 1ˆ 
xxR a [aH 1ˆ 

xxR a]-1,        (5) 

 
where )( daa   if steering vector error exists. The sample 

correlation matrix xxR̂  is computed from the received data 

vector x(t) as follows: 
 

H

1

)()(
1ˆ

n

N

n
n tt

N
xxR xx 


 ,       (6) 

 
where N denotes the number of data snapshots used and tn the 
nth time instant. Without steering vector error, wsmi converges 
to w given by (4) as N increases. 

In the presence of random steering vector, we consider that 
the actual steering vector a is expressed by, 

 

Δaa ed   )( ,         (7) 

 
where e  denotes an error index and Δ a Gaussian random 

vector with zero mean vector and covariance matrix equal to 
the identity matrix IM. Since )( daa  , using the weight 

vector wsmi given by (5) for adaptive beamforming, the adaptive 
antenna array will suppress the desired signal because the 
desired signal becomes an undesired signal or interferer. 

B. Proposed Robust Technique 

Due to the random steering vector error, the correlation 
matrix computed according to (6) is deteriorated and cannot 
provide the performance that we are looking for. To deal with 
this problem, we first construct an appropriate correlation 
matrix to replace the one obtained by (6). In practice, the 
information regarding the number of interferers, as well as their 
actual steering vectors and powers, and the noise power is 
unavailable. The reconstruction of the correlation matrix of the 
received array data vector x(t) is not an easy task. Recently, a 
feasible approach was presented in [13]. Based on the concept 
of [13], we are able to easily reconstruct 

xxR̂ as follows: 
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 



d 

90

90 H1

H

)(ˆ)(

)()(ˆ
aRa

aa
R

xx
xx

,      (8) 

 
where )(a denotes the direction vector associated with the 

direction angle  in degree under the ULA. xxR̂  is computed 

from (6). According to our simulation experience, the 
integration over the entire angle range of [-90o, 90o] makes the 
reconstructed correlation matrix include all of the signal 
sources impinging on the ULA. This leads to eliminating the 
drawback of [13] due to possibly missing some interference 
signals during the reconstruction process. As a result, the 
adaptive array beamformer using the reconstructed data 
correlation matrix xxR ˆ  is able to suppress the interference 

signals more effectively. 
For the next step, we present a novel method to find an 

appropriate estimate of the actual direction vector for the 
desired signal. Only the data vector x(t) received by the M array 
sensors is required. To prevent the use of the existing 
estimation schemes which usually resort to employing 
complicated optimization algorithms, we propose an efficient 
manner to achieve this goal as follows. The basic idea is to take 
the similar procedure for obtaining (8). However, we only 
require the information regarding the signal sources contained 
in x(t) to perform the estimation. Hence, we reconstruct the 
signal correlation matrix ssR ˆ  associated with x(t) as follows: 

 







d

p

p







HH

H

)(ˆˆ)(

)()(ˆ
aEEa

aa
R

nn
ss

,    (9) 

 
where p  denotes the presumed direction angle of the desired 

signal and   the tolerance range decided by experiment for 
making ],[   ppd . Moreover, NÊ  represents 

the basis matrix spanning the noise subspace associated with 
x(t). To obtain NÊ , we can first perform the eigenvalue 

decomposition (EVD) of xxR̂  and then utilize the well-know 

and very reliable information theoretic approach presented by 
[15] to estimate the number of signal sources. The noise 
subspace NÊ  can be easily obtained based on the estimated 

signal number according to [16]. After obtaining ssR ˆ , we 

again perform its EVD and have: 
 

 



M

i
iii

1

Hˆ eeR ss  ,        (10) 

 
where i  denotes the ith eigenvalue and ei the eigenvector 

associated with i . Let e1 be the eigenvector associated with 

the maximum eigenvalue. Then, e1 can be the appropriate 
estimate of the direction vector of the desired signal. 
Accordingly, the resultant weight vector required for achieving 
adaptive beamforming against the considered random steering 
mismatch is given by, 

  1
1

1H
11

1 ˆˆ   eReeRw xxxxr .      (11) 

 
As regards the implementation of the proposed technique, 

the required computational complexity is dominated by the 
integrations shown by (8) and (9), and the EVD of (10). 
Clearly, the proposed technique requires less computational 
complexity than existing robust techniques like [11]-[13]. 

IV. COMPUTER SIMULATION RESULTS 

In this section, we present an example for illustration and 
comparison. For the simulations, we use a uniform linear array 
with omnidirectional array elements and M = 10. The 
inter-element spacing is set to half of the desired signal 
wavelength. Assume that all of the signal sources are binary 
phase-shift keying (BPSK) signals with rectangular pulse. The 
desired signal source impinges on the array from direction 
angle 

d = 0o off array broadside, while two interference signal 

sources impinge on the array from the direction angles 
1 = 

-30o and 
2 = 30o off array broadside, respectively. Moreover, 

the signal-to-noise power ratio (SNR) of the desired signal is 
set to 10 dB and the interference-to-noise power ratio (INR) is 
set to 20 dB, respectively. All the simulations are obtained by 
averaging 100 Monte-Carlo runs for illustration and 
comparison. Simulation results of using the proposed method, 
the fully data-dependent loading technique of [11], the robust 
technique of [13], and the conventional LCMV method of [14] 
are presented. In addition, the theoretically optimal 
performance without error (termed the ideal case) of using 
LCMV of [14] is also provided for confirming the effectiveness 
of the proposed technique. When using the proposed technique 
and the robust technique of [13], we set the angle range 

],[   pp
 to ]5,5[ oo  . 

Fig. 1 depicts the resulting array beam patterns of utilizing 
the above methods for comparison. We note from the figure 
that the LCMV of [11] cannot cure the problem of random 
steering vector mismatch. The proposed technique outperforms 
the other two existing robust techniques. Fig. 2 plots the 
resulting array output SINR versus the number of the data 
samples used for simulations. Again, we observe from this 
figure that the LCMV of [11] fails to deal with the problem of 
random steering vector mismatch. The performance of the 
proposed technique is significantly better than the other two 
existing robust techniques. Finally, Fig. 3 shows the array 
output SINR versus the variance of the random steering 
mismatch. This figure shows that the proposed technique 
possesses the advantages of better robustness against random 
steering mismatch over the existing robust techniques. 

V. CONCLUSION 

This paper has presented an efficient technique for dealing 
with the problem of random steering mismatch in adaptive 
array beamforming. Only the information of the data vector 
received by an antenna array is required for developing the 
proposed technique. Based on the sample correlation matrix 
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associated with the array data vector, we reconstruct two 
correlation matrices and find an appropriate estimate for the 
steering vector. Then, the reconstructed correlation matrix of 
the array data vector and the estimated steering vector are 

utilized for adaptive beamforming. Simulation results have 
shown the efficiency of the proposed technique in terms of 
better robustness and less computational complexity than the 
existing robust techniques. 

 

 

Fig. 1 The array beam pattern with 12 e  and 100 data samples 

 

 

Fig. 2 The array output SINR versus number of data samples with 12 e  
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Fig. 3 The array output SINR versus 
2
e with 100 data samples 
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