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 
Abstract—Time history dynamic analysis of structures is 

considered as an exact method while being computationally 
intensive. Filtration of earthquake strong ground motions applying 
wavelet transform is an approach towards reduction of computational 
efforts, particularly in optimization of structures against seismic 
effects. Wavelet transforms are categorized into continuum and 
discrete transforms. Since earthquake strong ground motion is a 
discrete function, the discrete wavelet transform is applied in the 
present paper. Wavelet transform reduces analysis time by filtration 
of non-effective frequencies of strong ground motion. Filtration 
process may be repeated several times while the approximation 
induces more errors. In this paper, strong ground motion of 
earthquake has been filtered once applying each wavelet. Strong 
ground motion of Northridge earthquake is filtered applying various 
wavelets and dynamic analysis of sampled shear and moment frames 
is implemented. The error, regarding application of each wavelet, is 
computed based on comparison of dynamic response of sampled 
structures with exact responses. Exact responses are computed by 
dynamic analysis of structures applying non-filtered strong ground 
motion.  
 

Keywords—Wavelet transform, computational error, 
computational duration, strong ground motion data. 

I. INTRODUCTION 

IME history analysis of structures is considered as an 
exact solution for seismic analysis of structures while 

intensive computational time is needed. Fourier Transform 
(FT) and Fast Fourier Transform (FFT) are methods, applied 
through time history dynamic analysis [1]. Strong ground 
motion of earthquakes are represented in time domain while 
FT and FFT denote the frequency domain of strong ground 
motion. Frequency content of strong ground motion is 
evaluated by frequency spectrum, computed by FT and FFT 
[2]. 

Frequency domain is computed by FT. FTs apply sinus and 
cosine functions as fundamental waves which are applied from 
  to  , meanwhile there is one point as amplitude for 

each frequency. This difficulty will result in instability while 
applying non-harmonic waves. Therefore, wavelet transform 
is applied as a more powerful and effective approach towards 
frequency domain analysis of structures [2]. Wavelet 
transform has been applied in geophysics to analyze seismic 
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data in view of oil and mine explorations. These transforms 
have been invented by mathematician about 20 years before 
their applications in signal processing. The pioneer researcher 
who applied wavelet transform in vibration analysis is 
Neylonde. Assessment of vibrated buildings by under-ground 
trains has been implemented by Neylonde [3]. Wavelet 
transforms have been applied in commercial data analysis of 
markets, discovery of cell membranes in biology, storage of 
33 million fingerprints in Federal Bureau of Investigation, 
image processing, image exploration, animation control and 
image compaction and health monitoring in civil engineering 
[4].  

Wavelet transform can be applied to filter earthquake strong 
ground motions. This method will divide the earthquake 
records into two main parts, namely low and high frequencies. 
The contribution of high frequency portion of earthquake 
record in structural response is negligible. Therefore, the 
structure is excited by low frequency part of earthquake 
records. Application of wavelet transform to an earthquake 
record will reduce the record points by half then the 
computational time will be reduced proportionately.  

Wavelets are mathematical functions which are applied 
towards signals decomposition into frequency components. 
Resolution of each component will be its scale factor. Wavelet 
transformation is mathematical convolution based on wavelet 
functions. Wavelet functions (which are entitled as infant 
wavelets) are forms of transformed and scaled of a function 
(namely parent wavelet) with finite length and severely-
damped [5].  

FT represents the frequency content of a wave and does not 
show the time of occurrence for each frequency. Furthermore, 
application of harmonic functions as base waves in FTs causes 
instability while being applied for non-harmonic pulses. On 
the other hand, wavelet transforms are superior in comparison 
with FT in view of overcoming the mentioned shortcomings 
[6].  

The wavelet transform possesses a satisfactory 
characteristic of localization. For instance, one must compute 
many coefficients to achieve FT of a steep function, since the 
base functions for this transform are sine and cosine with 
constant coefficients. On the other hand, the energy of wavelet 
functions are localized while being quickly damped. 
Therefore, the wavelet transform has the superiority of 
compression in comparison with FT while a suitable parent 
wavelet is selected. In this research, the wavelet transform is 
applied to the strong ground motion of earthquake and even 
and odd data of earthquake records are applied the structure 
separately.  
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II. WAVELET TRANSFORM 

Transformation and scaling of parent wavelets will produce 
wavelet functions. Scaling parameters which are applied to 
parent wavelet are computed as [7]:  
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)(tg  is the parent function while b and  are characterized as 

scale and transform factors, respectively. To give the 
impression of low frequency content of the signal, b value 
must be increased, while the parent wavelet will be stretched 
and will cover more part of signal. If b value is decreased then 
the parent function will be tightened up and the wavelet will 
show the lower frequency portion of the signal.  Transforms 
the wavelet to the main signal and corresponds to time domain 
transformation [8]. 

Wavelets are real and imaginary functions in time and 
frequency domains and have analogous forms. To practice the 
wavelet analysis, the signal must be multiplied to the wavelet 
function and integration is calculated separately for each parts 
of sampled signal in time domain. The first step to calculate 
the wavelet transform of a sampled signal )(tx  is 

multiplication of the sampled signal to the wavelet function 
and integrate the result inside the signal’s domain. The 
following equation represents the procedure [9].  
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WT is the abbreviation of Wavelet Transform, g
b ,

is 

calculated based on (1), and asterisk shows the imaginary 
conjugate. Scaling parameter in WT is similar to scale factor 
of a map. While the detailed parts are ignored in large-scale 
maps, similarly, large scale factor in WT corresponds to 
ignoring the detailed part of the signal and small factor 
corresponds to display the detained parts of the signal. 
Likewise, in frequency domain, lower frequency (larger scale) 
corresponds to general characteristics of the sampled wave, 
while higher frequencies represent the detailed and local 
characteristics. While the higher frequencies occur in a low 
duration, the lower frequencies are present in much more 
duration of the sampled signal [10].  

If the wavelet possesses average value of zero and parent 
function amplitude is rapidly damped, then this convolution 
can be considered as locally affected transformation. Under 
these conditions, the transformation is reversible. The inverse 
wavelet transformation can be calculated by [11]: 
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III. WAVELET TRANSFORM IN MATLAB 

Earthquake records are discrete signals for which the 
discrete wavelet transformation is applied in the present 
research. For instance, applying Harr wavelet transform can 
be applied by the following equation based on MATLAB.  
 

)'',(],[ haarEarthquakedwtDA                                         (4) 
 
A  indicates the lower frequency part of the earthquake wave 
which must be applied to the structure and D shows the higher 
frequency part and is not applied through dynamic analysis of 
structures. According to the function of transformation, 
wavelet transforms can be categorized to Harr, Dmey, Sym1, 
Coif1 etc. Applying wavelet transform will double earthquake 
time step.  

Displacement matrix, which represents time history of 
seismic response, is derived by time history analysis of 
sampled structure. Each row of this matrix corresponds to 
displacement of one degree of freedom at each time step. 
Finally, real displacement of the considered DOFs is 
calculated through inverse wavelet transform of the 
corresponding rows. To achieve real displacement, inverse 
wavelet transform must be applied to each row of 
displacement matrix. Certainly, the inverse formula must be 
selected based on wavelet transform which has been applied in 
the first step of analysis. The following equation illustrates 
inverse wavelet analysis for the first row of displacement 
matrix.  
 

)''[],:),,1((:),1( haarntDisplacemeidwtNewDisp              (5) 

IV. APPLIED EARTHQUAKES AND WAVELET FUNCTIONS 

In this paper, north-south component of Northridge 
earthquake is selected as strong ground motion affected to the 
structures. Eight wavelet functions, namely Haar, Sym2, 
Sym3, Sym4, Sym5, Db1, Db2 and Db3 are considered as 
transformation formulas. 

V. FIRST CASE STUDY 

Five-story shear buildings with one span are considered as 
case studies in this paper (see Fig. 1). Rigid diaphragms 
assumption is considered which result in rigid beams and 
weight of each floor is considered as 21 tons. Applied cross 
sections for each frame are shown in Table I and the sampled 
shear structures are presented in Table II.  

Table III represents the approximation error for prediction 
of roof displacement while filtered ground motion is applied to 
the structure. This approximate value is compared with exact 
response, which is calculated through time history dynamic 
analysis of sampled structure excited by unfiltered ground 
motion.  

Figs. 2 and 3 show exact displacement time history of shear 
frame NO. 1 in 10 second and comparison with Haar and Db3 
wavelet transforms, respectively. 
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Fig. 1 A five story shear building 
 

TABLE I 
AVAILABLE PROFILES FOR THE ALL CASE STUDY 

No. Profile 

1 Box 180*180*16 

2 Box 220*220*17.5 

3 Box 240*240*20 

4 Box 260*260*20 

5 Box 280*280*20 

6 Box 300*300*20 

7 Box 320*320*20 

8 Box 340*340*20 

 
TABLE II 

SHEAR FRAME STRUCTURES AND SECTIONS USED IN THEM 

Structure 
no. 

Element groups no. 

1 2 3 4 5 

1 3 2 2 1 1 
2 5 4 3 2 1 

3 7 4 2 2 2 

4 8 5 4 3 1 
5 8 8 7 6 6 

 
TABLE III 

DISPLACEMENT ERROR PERCENT FOR THE ROOF OF SHEAR FRAME 
Structure no. 
and time (s) 

Wavelet 
Haar or 

Db1 
Sym2 or 

Db2 
Sym3 or 

Db3 
Sym4 Sym5 

1 0.83 0.26 0.36 0.33 0.36 
Time 0.320 0.351 0.344 0.351 0.322 

2 0.68 0.14 0.02 0.12 0.07 
Time 0.323 0.344 0.361 0.322 0.352 

3 0.41 0.60 0.20 0.07 0.10 
Time 0.348 0.338 0.357 0.342 0.314 

4 0.37 1.49 0.32 0.07 0.14 
Time 0.359 0.375 0.345 0.62 0.330 

5 1.45 0.04 0.06 0.85 0.55 
Time 0.335 0.345 0.325 0.321 0.317 

Average error 0.74 0.50 0.19 0.28 0.24 
Average time 

(s) 
0.337 0.350 0.346 0.339 0.327 
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Fig. 2 Roof displacement derived by Haar wavelet compared with 
exact ones for first shear frame 
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Fig. 3 Roof displacement derived by Db3 wavelet compared with 
exact ones for first shear frame 

. 
Figs. 4 and 5 show exact displacement time history of shear 

frame NO. 5 in 10 second and comparison with Haar and Db3 
wavelet transforms, respectively. 
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Fig. 4 Roof displacement derived by Haar wavelet compared with 
exact ones for fifth shear frame 
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Fig. 5 Roof displacement derived by Db3 wavelet compared with 
exact ones for fifth shear frame 
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VI. SECOND CASE STUDY 

As the second case study, one-span five-story moment 
frames are considered (see Fig. 6). A uniform service load of 
1000 kg/m is applied to the structural beams additional to the 
uniform weight of the elements.  

 

 

Fig. 6 A Five-story bending frame 
 

TABLE IV 
FIVE-STORY BENDING FRAME STRUCTURES AND SECTIONS USED IN THEM 

Structure no. 
Element groups no. 

1 2 3 4 5 

1 3 2 1 2 1 
2 5 4 3 2 1 

3 7 4 2 3 1 

4 8 7 6 3 2 

5 8 8 7 7 6 

 
TABLE V 

ERROR PERCENT OF MAXIMUM ROOF DISPLACEMENT FOR FIVE-STORY 

BENDING FRAME 
Structure no. 
and time (s) 

Wavelet 
Haar or 

Db1 
Sym2 
or Db2 

Sym3 
or Db3 

Sym4 Sym5 

1 0.27 0.81 0.08 0.02 0.01 
Time 1.858 1.873 1.861 1.875 1.886 

2 1.13 0.48 0.24 0.22 0.30 
Time 1.874 1.868 1.873 1.861 1.874 

3 0.43 0.91 0.07 0.10 0.05 
Time 1.854 1.901 1.905 1.902 1.873 

4 0.57 1.50 0.20 0.02 0.11 
Time 1.879 1.889 1.873 1.887 1.875 

5 3.53 2.07 0.27 0.88 0.59 
Time 1.878 1.883 1.885 1.892 1.892 

Average error 1.18 1.15 0.17 0.24 0.21 

Average time (s) 1.868 1.882 1.879 1.883 1.880 

 
In comparison with shear buildings, similar cross sections 

are considered in sampled moment frames. Table IV shows 
five considered moment frames.  

The error of prediction for roof displacement of the sampled 
moment frames is presented in Table V. In approximate 
analysis filtered strong ground motion are applied to the 
structure while exact solution is derived based on full time 
history dynamic analysis of sampled moment frames applying 
unfiltered strong ground motion.  

Figs. 7 and 8 show exact displacement time history of 
bending frame NO. 1 in 10 second and comparison with Haar 
and Db3 wavelet transforms, respectively. 
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Fig. 7 Displacement of joint 1 in X direction by Haar wavelet 
compared with exact ones for first bending frame 
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Fig. 8 Displacement of joint 1 in X direction by Db3 wavelet 
compared with exact ones for first bending frame 

 
Figs. 9 and 10 show exact displacement time history of 

bending frame NO. 5 in 10 second and comparison with Haar 
and Db3 wavelet transforms, respectively. 
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Fig. 9 Displacement of joint 1 in X direction by Haar wavelet 
compared with exact ones for fifth bending frame 
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Fig. 10 Displacement of joint 1 in X direction by Db3 wavelet 
compared with exact ones for fifth bending frame 
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