
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

698

Abstract—Defect prevention is the most vital but habitually

neglected facet of software quality assurance in any project. If

functional at all stages of software development, it can condense the

time, overheads and wherewithal entailed to engineer a high quality

product. The key challenge of an IT industry is to engineer a

software product with minimum post deployment defects.

This effort is an analysis based on data obtained for five selected

projects from leading software companies of varying software

production competence. The main aim of this paper is to provide

information on various methods and practices supporting defect

detection and prevention leading to thriving software generation. The

defect prevention technique unearths 99% of defects. Inspection is

found to be an essential technique in generating ideal software

generation in factories through enhanced methodologies of abetted

and unaided inspection schedules. On an average 13 % to 15% of

inspection and 25% - 30% of testing out of whole project effort time

is required for 99% - 99.75% of defect elimination.

A comparison of the end results for the five selected projects

between the companies is also brought about throwing light on the

possibility of a particular company to position itself with an

appropriate complementary ratio of inspection testing.

Keywords—Defect Detection and Prevention, Inspections,

Software Engineering, Software Process, Testing.

I. INTRODUCTION

defect in an application can lead to a harmful situation in

all phases of software development process. Anything

connected to defect is a continual process and not a state.

Defect prevention activity stems from comprehension of

defects. A defect refers to any inaccuracy or blemish in a

software work product or software process. The term defect

refers to an error, fault or failure [1]. The IEEE/Standard

defines the following terms as Error: a human action that leads

to incorrect result.

Fault: incorrect decision taken while understanding the

given information, to solve problems or in implementation of

process. A Failure: inability of a function to meet the expected

requirements [2]–[3].

Suma V. is with Information Science and Engineering Department,

Dayananda Sagar College of Engineering, Bangalore, India (e-

mail:sumavdsce@gmail.com).

T. R. Gopalakrishnan Nair is with Research and Industry Incubation

Center, Dayananda Sagar Institutions, Bangalore, India (e-mail:

trgnair@ieee.org).

Defect prevention [DP] is a process of identifying defects,

their root causes and corrective and preventive measures

taken to prevent them from recurring in future, thus leading to

the production of a quality software product [4]-[5]-[11]-[12]-

[15]. Hence, organizations should opt for defect detection and

prevention strategies for long-term Return on Investment

(ROI).

Among several approaches, inspection has proven to be the

most valuable and competent technique in defect detection

and prevention [5]-[13]-[14]-[15]. Identified defects are

classified at two different points in time 1) time when the

defect was first detected and 2) time when defect got fixed.

Orthogonal Defect Classification (ODC) is the most prevailing

technique for identifying defects wherein defects are grouped

into types rather than considered independently. This

technique highlights those areas in software development

process that require attention [6]–[14].

If a defect dwells for a longer time in the product, it is more

expensive to fix it. Therefore, it is necessary to reduce defect

injection and boost defect removal efficiency. Defect removal

efficiency (DRE) metric quantifies the excellence of the

product by computing the number of defects before release of

the product to the total number of latent defects [7]-[17].

 DRE = number of defects removed during development

phase / total number of latent defects

DRE depends upon time and method used to remove

defects. But it is always more lucrative for defects to be

prevented rather than detected and eliminated.

Certain amount of defects can be prevented through error

removal techniques like educating development team through

training, by use of formal specifications and formal

verifications. It can also be prevented with use of tools,

technologies, process and standards. Several tools are

available right from requirements phase to maintenance phase

to automate the entire development process. Usage of object

oriented technology reduces interaction problems thus

reducing number of defects arising in these areas. Defects can

be prevented with the choice of appropriate process and in

compliance with the process. By inculcating quality standards

in software development, defects can be prevented to a

maximum extent. Root cause analysis for defects is identified

to be very successful in prevention of defects in all the

booming software companies [8]-[9]-[16].

Effective Defect Prevention Approach in

Software Process for Achieving Better Quality

Levels

Suma. V., and T. R. Gopalakrishnan Nair

A

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

699

II. CASE STUDY

The following case studies provide information on various

defect detection and prevention techniques that are

incorporated in mature companies in delivering a high quality

product. This also includes one company that does not strictly

adhere to DP strategies.

A. Effective Defect Prevention Techniques Adopted in a

Leading Product Based Company in Embedded Systems

The company follows staged process model, which is a

representation of CMMI Meta model. The staged process

defines five maturity levels and the process areas that are

required to achieve a maturity level.

Since 1999-2000, the company follows qualitative and

quantitative analysis as a defect preventive strategy. A data

base is maintained to capture the mistakes identified after

product is shipped to the field. Qualitative analysis comprises

of stage kick off meeting to be carried out prior to the start of

each life cycle phase or task to highlight those areas where

mistakes were committed, identified and actions that were

taken for their rectification in the past. Sensitization and

discussions are carried out for the current project by handing

over the documents of the lessons learned from previous

similar type of projects. The core intention is to reduce defect

injection and increase defect removal efficiency [10].

In quantitative approach, authentic and realistic data are

collected from the stored projects. Based on 80% rule,

projects are categorized on platform and technology upon

which they were implemented. Control charts are used to

inspect for consistency checks at all phases of software

development life cycle. If an inspection at a phase exemplifies

the non-conformance of the defects in the control band, it

reveals the fact that either review was excellent or if review

was reprehensible.

Testing comprises of

Regression testing which ensures non

introduction of unintentional behavior or additional

errors in the software

Performance test is conducted to ascertain the

performance of requirements.

Environmental test ensures testing of

environment in which the product is to be deployed.

Health test is also conducted for users of the

product in compliance with health safety standards.

The review efficiency metric gives an insight on quality of

review conducted. Review efficiency is idyllic if it can

identify one critical defect per every one man hour spent on

reviews.

Review Efficiency = Total number of defects found by

reviews /Total number of defects in product

With a review efficiency of 87%, the company reported

increasing their productivity from 250 to 400 accentuating the

importance of adopting DP strategies. With an inspection-

testing time ratio of 15:30, the company was able to reach a

quality level of 99.75% defect-free product.

Observation

Inspection is carried out at all phases of software

development rather than performing it only at coding stage.

Inspection is carried out for requirement specifications, high

level design and low level design in addition to code reviews.

Company schedules 15% of the total time of the project for

inspections and 30% for testing to achieve a quality of 99.75%

defect-free product.

As the deployable product is almost free from defects, cost

entailed for rework is quite nominal. Since cost of fixing

defects after shipment is 10 times more than the cost of fixing

it in-house [9], inspection becomes mandatory for highly

safety critical systems [11].

Table 1 depicts the estimated time and actual time for 5

different projects. Average time estimated for inspection is

13.9 % of total project time and actual time taken is 14.2%.

Test time is estimated to be 28.2% but actual test time is

30.8% of the total project time. Thus for highly critical

systems an inspection of 15% and testing of 30% is good

enough to achieve nearly 99.75 % of defect-free product.

B. Effective Defect Prevention Techniques Adopted in a

Leading Service Based Software Company

The company follows staged continuous model, which is a

representation of CMMI Meta model. The continuous process

defines five capability levels and process areas that are

assessed for five capability levels.

Since 2002, the company is adhering to defect detection and

defect prevention techniques to enhance quality of the

product. The defect detection techniques are review of plans,

schedules, and records. Product and process audits are carried

out as part of quality control to uncover defects and correct

them. The defect prevention techniques followed in the

company includes pro-active, reactive and retrospective DP.

Pro-active DP is to create an environment for controlling

defects rather than just reacting to it. A stage kick off meeting

is conducted to reveal those areas where slip-ups were

committed, recognized and actions taken for their refinement

in the past. Company considers from the previous projects, the

lessons learnt from the life cycle phases, the DP action items

documented and best practices adopted. It leverages from

other projects, the DP action items in the organization that are

of same nature.

Reactive DP identifies and conducts RCA (Root Cause

Analysis) for defects meeting at trigger points or at logical

points. Therefore, curative actions are employed along with

preventive actions to eliminate the potential defects. The most

common root causes for defects identified are lack of

communication, lack of training, oversight, project

methodology and planning.

Retrospection is performed towards the end of the project

or at identified phases to identify strong points and to explore

the areas requiring perfection.

Observation

Inspection is executed at all stages of software

development. Testing activity includes automation testing,

verification and validation testing. From 5 projects listed in

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

700

Table 2 it is observed that inspection time estimated is 12.9%,

and actual time taken is 14.7% of total project time. With an

estimate of 25% of testing time, it is seen that 25.1% of total

development time is required to achieve nearly 99% defect-

free software product.

The cost of rework for 1% of defect when identified at the

customer’s site is 10 times the cost required for fixing the

same defect when identified in-house [11]. As a matter-of-

fact, companies adopting to DP strategies have shown that

over a period of time, quality of the product is enhanced while

the cost of quality is reduced [12].

C. A company, which is not Strictly Adhering to DP

In comparison with the observations made from previous 2

companies, a company which has not strictly followed DP has

also been studied. Because DP is not stringently followed, a

substantial amount of time is spent on developer unit testing,

verification and validation.

Observation

The company schedules 5% of total project time for

inspection which necessitates almost 40% of testing time out

of the total development effort. Defects that can be captured

with this ratio of inspection and testing are only 80%.

Cost required for rework is found to be more expensive

than the cost incurred in adhering to DP strategies. Of the

selected 5 projects, it is observed from the Table III that with

an estimated inspection time of 4.8%, actual taken time taken

for inspection is 5.5%. This ratio requires a scrupulous testing

of 40.6% of actual time against an estimated time of 34.5%

out of whole project time. If inspection time is increased in all

phases of software development life cycle, then testing time

gets significantly reduced.

Fig. 1 shows a comparative graph of inspection and testing

for 5 selected projects from 3 different companies. From the

graph, it is clear that with increase in inspection time, testing

time gets decreased, as most of the defects get uncovered

during inspection. Investment in inspection is initially high

but over a period of time it becomes stable, which means cost

is reduced and quality is increased.

COMPARATIVE INSPECTION(AVG)

0.0

10.0

20.0

30.0

40.0

PROJECTS

A
C

T
U

A
L

 T
IM

E

C1

C2

C3

C1 9.3 29.0 13.7 6.3 12.7

C2 8 22 22.3 10.7 10.3

C3 15.0 16.0 22.3 10.7 13.7

P1 P2 P3 P4 P5

COMPARATIVE TEST(AVG)

0.0

10.0

20.0

30.0

40.0

50.0

PROJECTS

A
C

T
U

A
L
 T

IM
E

C1

C2

C3

C1 32.7 32.0 36.3 28.3 24.7

C2 22.7 31.3 29.0 21.7 21.0

C3 32.7 42.8 21.3 14.0 33.9

P1 P2 P3 P4 P5

 Fig. 1 Comparative graphs of inspection and testing for 3 companies

over 5 selected projects

III. CONCLUSION

Implementation of defect prevention strategy not only

reflects a high level of process maturity but is also a most

valuable investment. The detection of errors in development

life cycle helps to prevent the passage of errors from

requirement specification to design and from design to code.

Analysis carried out across three companies shows the

importance of incorporating defect prevention techniques in

delivering a high quality product. The focal point of quality

cost investment is to invest in right DP activities rather than

investing in rework which is seen as an outcome of

uncaptured defects. There are several methods, techniques

and practices for defect prevention. Software inspection has

proved to be the most successful defect detection and

prevention technique. The goal of reaching a consistently 99

% defect-free software depends much on effective defect

prevention techniques adopted.

REFERENCES

[1] Brad Clark, Dave Zubrow, “How Good Is the Software: A review of

Defect Prediction Techniques”, sponsored by the U.S. department of

Defense 2001 by Carnegie Mellon University, version 1.0, pg 5.

[2] The Software Defect Prevention /Isolation/Detection Model drawn from

www.cs.umd.edu/~mvz/mswe609/book/chapter2.pdf

[3] Jeff Tian “Quality Assurance Alternatives and Techniques: A Defect-

Based Survey and Analysis”, ASQ by Department of Computer Science

and Engineering, Southern Methodist University , SQP Vol. 3, No.

3/2001.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

701

[4] Purushotham Narayan, “Software Defect Prevention in a Nut shell”,

Copyright © 2000-2008 iSixSigma LLC. See also

software.isixsigma.com/library/content/c030611a.asp - 73k –

[5] S.Vasudevan, “Defect Prevention Techniques and Practices”

proceedings from 5th annual International Software Testing Conference

in India, 2005.

[6] Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K.

Ray, M.-Y. Wong, "Orthogonal Defect Classification-A Concept for In-

Process Measurements," IEEE Transactions on Software Engineering,

vol. 18, no. 11, pp. 943-956, Nov., 1992 .

[7] Craig Borysowich , “Inspection/Review Meeting Metrics”, 2006. See

also blogs.ittoolbox.com/eai/implementation/archives/sample-

inspectionreview-metrics-13640 - 184k

[8] Halling M., Biffl S. (2002) "Investigating the Influence of Software

Inspection process Parameters on Inspection Meeting Performance", Int.

Conf. on Empirical Assessment of Software Engineering (EASE), Keele,

April 2002.

[9] Stefen Biffl, Michael Halling, “ Investingating the Defect Detection

Effectiveness and Cost Benefit of Nominal Inspection Teams “, IEEE

Transactions On Software Engineering, Vol 29, No.5, May 2003

[10] Defect Prevention by SEI’s CMM Model Version 1.1.,,

http://ww.dfs.mil/techlogy/pal/cmm/lvl/dp.

[11] Watts S. Humphrey, "Managing the Software Process", Chapter 17 –

Defect Prevention, ISBN-0-201-18095-2

[12] Kashif Adeel, Shams Ahmad, Sohaib Akhtar, “Defect Prevention

Techniques and its Usage in Requiremnts Gathering-Industry

Practices”, Paper appears in Engineering Sciences and Technology,

SCONEST, ISBN 978-0-7803-9442-1, pg 1-5,August 2005

[13] Joe Schofield, “Beyond Defect Removal: Latent Defect Estimation with

Capture Recapture Method (CRM)”, published in IT Metrics and

Productivity Journal, August 21, 2007

[14] Adam A. Porter, Carol A. Toman and Lawrence G Votta, “An

Experiment to Assess the Cost-Benefits of Code Inspections in Large

Scale Software Development”, IEEE Transactions on Software

Engineering, VOL. 23, NO. 6, June 1997

[15] Lars M. Karg, Arne Beckhaus, “ Modelling Software Quality Costs by

Adapting Established Methodologies of Mature Industries", Proceedings

of 2007 IEEE International Conference in Industrial Engineering and

Engineering Management in Singapore, ISBN 078-1-4244-1529-8, Pg

267-271, 2-4 Dec.2007

[16] David N. Card, “Myths and Stratergies of Defect Causal Analysis”,

Proceedings from Pacific Northwest Software Quality Conference,

October.

[17] K.S. Jasmine, R. Vasantha ,”DRE – A Quality Metric for Component

based Software Products”, proceedings of World Academy Of Science,

Engineering and Technonolgy, Vol 23, ISSN 1307-6884, August 2007.

TABLE I

TIME AND DEFECT PROFILE OF A LEADING SOFTWARE PRODUCT BASED COMPANY

 P1 P2 P3 P4 P5

Total time (in man

hours)
250 263 200 201 340 355 170 167 100 101

Req time 20 23 30 35 25 23 15 14 23 25

Req review 2 1 5 6 3 3 2 1 2 2

Req test 5 6 8 8 5 6 5 7 4 5

Design time 35 40 80 82 45 46 28 29 40 46

Design review 3 3 10 14 6 5 5 3 5 5

Design test 9 11 20 22 9 10 8 10 8 11

Implementation

time
90 100 200 201 115 118 52 50 100 101

Code review 15 16 26 27 15 17 9 7 15 17

Testing 78 81 64 66 90 93 60 68 50 58

Insp Avg 10 9.3 23.7 29 14 13.7 10 6.3 12 12.7

Test Avg 30.7 32.7 30.7 32 34.7 36.3 24.3 28.3 20.7 24.7

Shaded column indicates estimated values and unshaded columns indicate the actual values

Req – Requirement, Insp – Inspection, Avg – Average

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:6, 2008

702

TABLE II

TIME AND DEFECT PROFILE OF A LEADING SERVICE BASED COMPANY

 P1 P2 P3 P4 P5

Total time

(in man hours)
250 263 502 507 340 368 166 167 255 263

Req time 25 20 50 55 32 32 10 12 25 20

Req review 4 5 10 12 12 13 5 7 6 7

Req test 4 4 10 9 12 10 5 5 7 3

Design time 40 45 100 110 40 45 20 22 40 45

Design review 6 6 18 20 17 19 8 11 8 9

Design test 7 8 19 17 18 12 10 10 9 8

Implementation

time
85 100 180 165 100 105 45 40 85 100

Code review 12 13 32 34 31 35 13 14 12 15

Testing 55 56 63 68 61 65 45 50 50 52

Avg insp 7.3 8 20 22 20 22.3 8.7 10.7 8.7 10.3

Avg test 22 23 30.7 31.3 30.3 29 20 21.7 22 21

TABLE III

TIME AND DEFECT PROFILE OF A COMPANY NOT STRINGENT TO DP

 P1 P2 P3 P4 P5

Total time (in man

hours) 225 230 490 507 340 368 150 159 240 250

Req time 20 24 54 55 28 30 15 19 30 30

Req review 2 2 3 4 3 3 1 1 2 2

Testing 9 10 20 22 16 16 6 7 10 11

Design time 30 35 70 77 40 42 30 33 45 45

Design review 3 4 4 5 3 3 1 1 2 3

Testing 11 12 26 28 17 18 9 10 13 17

Implementation

time 85 100 180 165 100 105 45 40 85 100

Code review 6 6 13 13 12 13 9 10 12 12

Testing 68 80 120 133 93 105 50 68 65 72

Avg insp 3.7 4 6.7 7.3 6 6.3 3.7 4 4 5.7

Avg test 29 34 55.3 61 42 46.3 21.7 28.3 29.3 33.3

