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Effective Charge Coupling in Low Dimensional
Doped Quantum Antiferromagnets
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Abstract—The interaction between the charge degrees of freedom
for itinerant antiferromagnets is investigated in terms of generalized
charge stiffness constant corresponding to nearest neighbour t-J
model and t1-t2-t3-J model. The low dimensional hole doped
antiferromagnets are the well known systems that can be described
by the t-J-like models. Accordingly, we have used these models
to investigate the fermionic pairing possibilities and the coupling
between the itinerant charge degrees of freedom. A detailed
comparison between spin and charge couplings highlights that
the charge and spin couplings show very similar behaviour in
the over-doped region, whereas, they show completely different
trends in the lower doping regimes. Moreover, a qualitative
equivalence between generalized charge stiffness and effective
Coulomb interaction is also established based on the comparisons
with other theoretical and experimental results. Thus it is obvious
that the enhanced possibility of fermionic pairing is inherent
in the reduction of Coulomb repulsion with increase in doping
concentration. However, the increased possibility can not give rise to
pairing without the presence of any other pair producing mechanism
outside the t-J model. Therefore, one can conclude that the t-J-like
models themselves solely are not capable of producing conventional
momentum-based superconducting pairing on their own.

Keywords—Generalized charge stiffness constant, charge coupling,
effective Coulomb interaction, t-J-like models, momentum-space
pairing.

I. INTRODUCTION

STRONGLY correlated systems have proved

their importance from the time of discovery of

antiferromagnetism by Louis Néel [1], [2], [3]. The

cuprates are the strongly correlated materials that exhibit

many interesting phases upon doping with holes [4], [5], [6].

The phases include the long range ordered antiferromagnetic

phase in low doping regime, anomalous non-Fermi liquid-like

conducting phase and normal Fermi liquid-like conducting

phase at higher doping regions. Interestingly, the optimally

doped region shows high temperature superconductivity below

the corresponding critical temperature [4], [5], [6]. However,

the subsequent discussions about this unconventional

superconductivity in cuprates are necessarily accompanied

by the possibility of pair formation in these systems. The

interaction between the charge degrees of freedom, in effect

to the Coulomb potential, are important in determining the

Suraka Bhattacharjee is with the Department of Condensed Matter Physics
and Material Sciences, S.N. Bose National Centre for Basic Sciences, Salt
lake, Kolkata, India, (corresponding author, phone: +919874209801, e-mail:
surakabhatta@bose.res.in).

Ranjan Chaudhury is with the Department of Physics, Ramakrishna Mission
Vivekananda Educational and Research Institute, Belur, India, (e-mail:
ranjan@bose.res.in).

pairing possibility in the strongly correlated doped phases [7].

Study of correlations between the spin and charge degrees of

freedom in the itinerant phases of doped cuprates involves the

Cu and the O bands [8], [9]. Later, the two band Hamiltonian

was reduced to the well known single band t-J model in the

low energy limit [10], [11], [12].

The magnetic interaction in 2D systems was studied

using many theoretical approaches including Mori’s projection

technique based on two-time thermodynamic Green’s function

and Variational Monte Carlo simulations [13], [14], [15], [16],

[17]. On the other hand, the 1D t-J model is exactly solvable

using Bethe Ansatz at specific values of J/t [18], [19]. Density

Matrix Renormalization Group (DMRG) and Transfer Matrix

Renormalization Group (TMRG) techniques have been used

very successfully in 1D to find the spin correlations away

from the super-symmetric points [20], [21]. In 2D too, some

attempts using DMRG have been done to find the spin and

charge density orders in the doped Hubbard model [22]. In our

recent papers, we have developed a non-perturbative quantum

mechanical approach to determine the spin correlations in

both 2D and 1D doped antiferromagnets, on the basis of

generalized spin stiffness constant corresponding to the t-J

model [23], [24]. Our results in 1D lead to a very interesting

consequence regarding the formation of a new type of

spin-spin coupling as doping increases, which is totally distinct

from the original antiferromagnetic coupling seen in the

insulating and under-doped phases [24]. Our novel prediction

was further supported by other experimental and theoretical

results [24].

Beside the spin correlations, the attempts to determine

the charge correlations include the determination of the

inverse dielectric function, involving the standard many body

formalism in a Fermi liquid [25]. The total free energy

used in the calculation comprises of the Hartree-like term

and the exchange correlation contributions. It was found that

the Coulomb interaction thus calculated from the inverse of

dielectric function, can even change sign and turn attractive

if the spin susceptibility is larger than a threshold value

[25]. This can trigger the possibility of pairing in some of

the doped antiferromagnetic systems. However, the above

technique could not determine the charge coupling in strongly

correlated phases of the systems, where the double fermionic

occupancy on each site is disallowed.

The other approaches include the finding of the local charge

stiffness tensor (Dαβ) as the response of the system to any

change in boundary condition [26]. The component Dαα was

used to find the optical mass and was shown to be directly

proprtional to the Drude weight [26]. But the magnitudes of
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charge stiffness constants, calculated by applying the Lanczos

algorithm, were determined only at discrete values of hole

concentrations [26], [27]. The Drude weight calculated by

exact diagonalization technique in Hubbard cluster shows an

increase in the lower doping regime, where the interacting

holes are considered as the major carriers [28]. Furthermore,

in the over-doped regime, the weakly interacting electrons take

the role of the major carriers and the Drude weight falls in

magnitude [29]. Moreover, the dynamical conductivity derived

based on the memory function technique in terms of the

Hubbard operators, was found to be proportional to doping

concentration [12]. In order to have a more clearer, definite

and detailed understanding of the doping dependences of the

charge stiffness, we embark upon an analytical approach.

In this paper, our main aims would be to determine

the interaction and coupling between the charge degrees of

freedom and to put forward a comparative study between

the charge and the spin couplings, determined earlier as

functions of doping concentration [23], [24]. Similar to case

of spin degrees of freedom, here the doping dependence

of charge-charge coupling is studied in terms of the

evolution of generalized charge stiffness constant with doping

concentration at T=0. In the strongly correlated under-doped

regime, we have involved the nearest neighbour t-J model

preventing the double occupancies. However, in the weakly

correlated over-doped regime, we have used the t1-t2-t3-J

model with the Gutwiller variational parameter α very small

or zero, which allows double occupancies in the system.

The results of charge stiffness in the lower doping regions

are compared with experimental result on a layered cuprate

system and based on the comparison, we have shown a

qualitative equivalence between our derived charge stiffness

constant and effective Coulomb interaction in the doped

regimes [30]. Finally, we have explored the consequences and

various possibilities arising from our systematic studies as

stated above.

II. RESULTS

A. Calculational Formalism and Numerical Results for
Charge Stiffness

1) Strongly Correlated and with Nearest Neighbour
Hopping: The nearest neighbour t-J model Hamiltonian for

strongly correlated electronic systems is [31], [32]:

Ht−J = Ht +HJ (1)

where Ht and HJ represents the hopping and exchange

interactions involving nearest neighbour sites, respectively

with restrictions on double occupancy at each site. The

expression for the kinetic energy Hamiltonian is given as [31],

[32]:

Ht =
∑

<i,j>,σ

tijX
σ0
i X0σ

j (2)

Here tij represents the hopping amplitude from jth to ith site

and for nearest neighbour tij=t and the X’s are the Hubbard

operators.

Again for the exchange energy part is represented as[31], [32]:

HJ =
∑
<ij>

Jij(
−→
Si.

−→
Sj − 1

4
ninj) (3)

where Si and Sj now represent the localized spin operators

corresponding to the ith and jth sites respectively; Jij is the

exchange constant involving the ith and the jth site and for

nearest neighbour pair 〈ij〉, Jij=J; ni and nj are the occupation

number operators for the ith and jth site respectively.

As was done earlier for generalized spin stiffness constant

(D̃s), a similar kind of equation also holds for the generalized

charge stiffness (D̃c)

D̃c = D̃t
c + D̃J

c (4)

where D̃t
c and D̃J

c are the contributions to spin stiffness

constant from kinetic energy and exchange energy respectively

and are given by [33], [34]:

D̃t
c = lim

φ→0
(
1

2
)
δ2T

δφ2
(5)

and

D̃J
c = lim

φ→0
(
1

2
)
δ2EJ

δφ2
(6)

where ‘T’ and ‘EJ ’ are the kinetic energy expectation value

and exchange energy expectation value of the t-J Hamiltonian.

φ is the magnetic twist corresponding to the Peierl’s phase

φσ arising from the presence of the vector potential A(−→r ) as

used in the definition of generalized stiffness constants [33],

[34]. The quantity φσ has the following property for the spin

symmetric case:

φ↓ = φ↑ = φ (7)

[This is unlike the spin asymmetric case, where we had used

φ↓ = −φ↑ = φ [23], [24], [34]]

We have evaluated the expectation values in the Gutzwiller

state.

|ψG〉 =
∏
l

(1− αn̂l↑n̂l↓)|FS〉 (8)

where α is the variational parameter deciding the amplitude

for no-double occupancy of any site and |FS〉 is the Fermi

sea ground state [23], [24], [34]. At first we take α=1 for

completely projecting out the doubly occupied sites.

|ψG〉NDOC =
∏
l

(1− n̂l↑n̂l↓)
kF∏
kσ

∑
ij

C†
iσC

†
j−σe

i(−→ri−−→rj ).−→k |vac〉

(9)

where |vac〉, i, j and l have the usual meaning [34].

The exchange energy for the spin symmetric case (see (6))

can be written as:

EJ = (
zt2eff
Veff

)
NDOC〈ψG|H ′

J |ψG〉NDOC

NDOC〈ψG|ψG〉NDOC
(10)
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where ‘z’ is the co-ordination number i.e., z=4 for 2-D and 2

for 1-D and

H ′
J =

−→
Si.

−→
Sj − 1

4
ninj (11)

with NDOC〈ψG|ψG〉NDOC being the normalization factor for

the Gutzwiller state |ψG〉NDOC [24].

Since EJ is φ independent [see 10)],

D̃J
c = 0 (12)

Thus D̃c = D̃t
c always. Hence the exchange energy

contribution to charge stiffness vanishes in the entire doping

region. This may be completely physical beacause the

interchange of spins has no effect on the carriers in terms

of their charge responses.

The total charge stiffness is given by the kinetic energy

contribution to charge stiffness (D̃t
c) and is derived taking the

second order derivative of kinetic energy expectation value in

the Gutzwiller state (see (5) and (8)). In 2D,

D̃c = (−t)[

kF∏
kx,σ

4cos(kxa)(1− δ)2 −Nl

kF∏
kx,σ

4cos(kxa)/N
2]

(13)

(while the vector potential is applied in x-direction) and for

1D,

D̃c = (−t)[

kF∏
k,σ

4cos(ka)(1− δ)2 −Nl

kF∏
k,σ

4cos(ka)/N2]

(14)

where Nl=N(1-δ), N is the total number of sites and ‘δ’ is

the doping concentration and the Fermi momentum kF in 2-D

has the form in the quasi-continuum approximation [23], [24],

[34]:

kF =

√
2π(1− δ)

a
(15)

and in 1-D:

kF = (π/2a)(1− δ) (16)

Here it can be noted that the form of D̃t
c is similar to that of

D̃t
s in both one and two dimensions [23], [24], [34]. Hence

following the same arguments described in our two previous

papers [23], [24], D̃c vanishes if at least one value of kx in

2D (k in 1D) satisfies:

For 2D,

kxa = π/2 (17)

and for 1D

ka = π/2 (18)

This condition can be satisfied only when kF a=π/2. Using the

expressions for kF (see (15,16)), one can get the vanishing

conditions are δ → 1 and δ �0.61 for 2D model and at δ → 1
and δ → 0 for 1D [23], [24], [34]. For the vector potential

applied in the x-direction, we get the value of δ=δc ≈0.61,

below which the charge stiffness remains zero in 2D.

Fig. 1 Dc vs. δ in 2D: (a) lattice size = 700x700; (b) lattice size = 800x800

The total charge stiffness constants derived for the strongly

correlated α=1 case in 2D and 1D are plotted against δ (see

Figs. 1, 2) [23], [24]. In the plots, the total charge stiffness

has been scaled down by the number of pairs of mobile holes

in the system, to extract an equivalent stiffness corresponding

to a pair of mobile charge carriers:

Dc = D̃c/
NlC2 (19)

In 2D, the scaled charged stiffness constant vanishes upto

the critical doping concentration δc, followed by a sharp rise

in Dc. The charge stiffness again falls drastically with further

increase in doping concentration, giving rise to the appearance

of a very sharp cusp-like peak in the over-doped region as

shown in Figs.1 (a), (b). For the 1D model, Dc shows a

maximum in the low doping region, and zero elsewhere (see

Figs. 2 (a), (b)). This characteristic behaviour of the coupling

between the charge degrees of freedom in the low doping

regime is quite physical, since in the under-doped region

the correlation is very strong with α=1, which prevents two

carriers from approaching close to each other and hence the

itinerant behaviour of the carriers are largely suppressed. As

a result the one charge can not feel the repulsion due to

another, giving a zero value to charge stiffness and remains

constant throughout the lower doping region. However, the

calculation in the over-doped regime is not justified only

with the nearest neighbour t-J model. The inclusion of higher

neighbour hopping terms are necessary for correctly predicting

the behaviour of the higher doping regions.
2) Weakly Correlated and with Higher Neighbour

Hhoppings: In the previous subsection, we have derived
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Fig. 2 Dc vs. δ in 1D: (a) lattice length = 1800; (b) lattice length = 1900

the charge stiffness in the strongly correlated regime,

considering only the nearest neighbour interaction. Now, in

this sub-section we will consider the over-doped regime with

very small α and α=0 i.e, allowing double occupancies in

the system. Moreover, as we have already stated that in the

over-doped regime, the higher neighbour hoppings are also

significant, so we have incorporated two higher neighbour

terms in the t-J model.

The t1-t2-t3-J model is given as [35]:

H = −t1
∑

<i,j>,σ

C†
iσCjσ − t2

∑
<<i,j>>,σ

C†
iσCjσ−

t3
∑

<<<i,j>>>,σ

C†
iσCjσ + J

∑
<i,j>,σ

Si.Sj (20)

where t1, t2 and t3 represent the first, second and third

neighbour hopping amplitudes respectively.

With the vector potential applied along the x-direction as

before, we get, in 2D,

D̃c = −[

kF∏
kx,σ

4{(t1)cos(kxa) + (t2)cos(2kxa)+

(t3)cos(3kxa)}(1− δ)2 − αNl

kF∏
kx,σ

4{(t1)cos(kxa)+

(t2)cos(2kxa) + (t3)cos(3kxa)}/N2] (21)

and in 1D,

D̃c = −[

kF∏
k,σ

4{(t1)cos(ka) + (t2)cos(2ka)+

(t3)cos(3ka)}(1− δ)2 − αNl

kF∏
k,σ

4{(t1)cos(ka)+

(t2)cos(2ka) + (t3)cos(3ka)}/N2] (22)

Now, we consider the limiting case with α=0 i.e, the double

occupancy is totally allowed on the sites and then the

Gutzwiller state reduces to that of an ideal Fermi system:

|FS〉 =
kF∏
kσ

∑
ij

C†
iσC

†
j−σe

i(−→ri−−→rj ).−→k |vac〉 (23)

Calculating the kinetic energy in this case (α=0) we get for

2D,

D̃c = −
kF∏
kx,σ

4{(t1)cos(kxa) + (t2)cos(2kxa)+

(t3)cos(3kxa)}(1− δ)2 (24)

and for 1D,

D̃c = −
kF∏
k,σ

4{(t1)cos(ka) + (t2)cos(2ka)+

(t3)cos(3ka)}(1− δ)2 (25)

From (21)-(25), one can see that the vanishing conditions

for D̃c corresponding to very small α and α=0 in 2D are δ →1

and δ � δc, where δc depends on the relative magnitudes of t1,

t2 and t3. For t2=t3=0 with α=0, the value of δc becomes 0.61,

which is exactly the same as the corresponding value of δc
obtained for the nearest neighbour t-J model. For 1D t1-t2-t3-J

model, Dc vanishes only at δ →1, however, the vanishing

conditions for pure t-J model are retained for t2=t3=0. Thus

it can be inferred that the zeros of D̃c occur at the same

value of doping concentration, when approached from the

strongly correlated region or uncorrelated side. The vanishing

of charge stiffness in the lower doping regime results from the

restrained motion of the charges, as also stated earlier. Here

the point where the stiffness exhibits a jump (δc) appears in

the optimal doping region which is much lower than that was

obtained from the nearest neighbour t-J model (i.e, δ=0.61).

The charge stiffness again falls with further increase in doping

concentration, due to the the presence of large number of

vacancies in the system. Hence, this δc may very well represent

a point of possible quantum phase transition between two

regions of constant stiffness separated by a sharp peak. The

recent experimental observations from some of the doped

correlated systems seem to have a link with this result of ours

[36].

The plots of Dc for weakly correlated t1-t2-t3-J model in two

dimension, are presented in Fig. 3. The corresponding plots

for 1D are given in Fig. 4. The values of t2/t1 and t3/t1 were

determined by fitting the tight binding Fermi surfaces to the

experimental results on La2−xSrxCuO4 and Bi2212 [37], [38].



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:14, No:2, 2020

27

The second neighbour hopping amplitude was found to be of

opposite sign with respect to the first neighbour hopping. Here,

we have done the calculations for a range of feasible values

of t2 and t3 and presented a result for a few sets of t2/t1 and

t3/t1.

Fig. 3 Dc vs. δ for 2D t1-t2-t3-J model, with α=0; (a)peak at δ ∼0.29
(t2=-0.53t1,t3=0.24t1) [green line]; (b)peak at δ ∼0.23

(t2=-0.52t1,t3=0.45t1) [blue line]; (c)peak at δ ∼0.19 (t2=-0.6t1,t3=0.56t1)
[red line] [in the inset is shown Dc vs. δ for t2=t3=0; the peak is seen at

δ ∼0.61]

Fig. 4 Dc vs. δ for 1D t1-t2-t3-J model, with α=0; (a)peak at δ ∼0.02
(t2=-0.01t1,t3=0.005t1) [red line]; (b)peak at δ ∼0.013

(t2=-0.02t1,t3=0.01t1) [green line]; (c)peak at δ →0 limit
(t2=-0.04t1,t3=0.02t1) [blue line]

Fig. 3 shows that the maximum in Dc shifts to the optimal

doping region for range of values of t2/t1 and t3/t1. Again, the

peak gradually shifts to further lower doping concentration

for relatively higher magnitudes of second and third neigbour

hopping amplitudes (| t2 | and | t3 |)(see Fig. 3). Similarly,

in 1D too, the peak in Dc shifts to very low doping regime

as | t2 | and | t3 | are enhanced and the position of the peak

reaches δ →0 limit at t2 ≈-0.04t1 and t3 ≈0.02t1 (see (Fig.

4).

B. Comparison with Experimental Results

In the present sub-section, we would to try compare

our results of charge stiffness with effective Coulomb

interaction and prove our conjecture already put forward in

the ‘Introduction’ part. In this context, it must be pointed out

that no direct experimental results are available for effective

Coulomb interaction (V
exp
eff ) of layered cuprate systems. So,

one can extract V
exp
eff from results of optical experiments,

using the constitutive equations as given below. Veff in the

long wavelength limit of the staggered magnetization is related

to the imaginary conductivity by the standard constitutive

equations in the continuum limit [39]:

ε′(ω) = 1− 4πσ′′

ω
(26)

Veff (ω) =
V0

ε′(ω)
(27)

leading to

V exp
eff (ω) =

V0

1− 4πσ′′
exp

ω

(28)

with V0 being the bare Coulomb interaction, ε′exp the real

part of the dynamic dielectric function and σ′′
exp representing

the imaginary part of the dynamic conductivity, extracted

experimentally.

The most of the experiments carried out on the planes

of lightly and optimally doped La2−xSrxCuO4 are at

high frequency and at much higher temperatures (>>0K),

which are not suitable for comparison with our results.

However, here, we have considered a transmitted THz

time-domain spectroscopy (THz-TDS) on La2−xSrxCuO4[30].

The effective Coulomb interaction is derived from the

experimentally extracted imaginary conductivity using (28).

We have found that the effective Coulomb interaction is small

and remains almost constant throughout the lower doping

region (in the calculation, we have used the bare onsite

Coulomb interaction V0=3.5eV in the undoped phase [30]).

This result is similar to that of our derived charge stiffness

constant as a function of doping in the under-doped region.

Further, we are awaiting more experimental results in the low

frequency region and our theoretical prediction for effective

Coulomb repulsion to be directly tested by experiments in

near future

III. DISCUSSION

The generalized charge stiffness constants for 2D and

1D t-J-like models in strong and weak correlation limits

are calculated. A weak dimensional dependence is seen for

coupling between the mobile charge degrees of freedom.

Furthermore, our calculations bring out several important

features and conclusions covering various aspects of correlated

fermionic systems in low dimensions.

The Dc in 2D remains zero upto δ=δc=0.61 and then

exhibits a sharp rise in value. δc shifts to optimal doping

region when t2 and t3 are included. The available experimental

results also show a similar behaviour in lower doping region

[30]. Thus a qualitative equivalence of charge stiffness

constant and effective Coulomb interaction is established in

the low δ regime. Moreover, as δ is increased the localized

insulating behaviour of the holes are lost and the charges

become itinerant above the strongly correlated under-doped

region. Keeping this in mind, one can take the continuum

approximation and observe a point of discontinuity in the

Lindhard function at q=2kF (‘q’ is the charge ordering wave

vector). Now, using different values of the ordering wave
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vector ‘q’, it can be shown that the discontinuity appears

at some in the optimal doping region, Fermi momentum

being related to δ by (15) [40], [41]. This discontinuity in

the Lindard function also manifests itself in the calculation

of dielectric function and as a result Veff shows a jump

at the corresponding value of δ [40], [41], [42] (the details

of the calculation might be published somewhere else). This

characterisctic behaviour is very similar to our result of derived

charge stiffness constant (see Fig. 1), which possibly signifies

the tendency of the formation of charge ordering or charge

density waves as the idea put forward by Overhauser [43].

Hence, the similarity in the behaviour of our derived charge

stiffness constant and effective Coulomb interaction proves the

qualitative equivalence between the two even in the over-doped

regime of these doped itinerant systems. Considering the

equivalence, we have drawn a phase diagram of the doped

antiferromagnets in 2D, based on their charge responses from

the t1-t2-t3-J model (see Fig. 5). We have shown the values

of critical doping concentration (δc) for different values of

t3/t1 ratio, taking t2/t1 as parameter. From Fig. 5, one can also

notice that for a particular value of t3/t1, the transition between

the two regions of different charge couplings, takes place at

a lower value of doping concentration for higher values of

|t2/t1 |.

Fig. 5 Phase diagram showing the critical doping concentration (δc),
separating the regions of charge couplings, as a function of t3/t1 (with t2/t1

ratio as the parameter). The regions of doping concentration below δc
represent the regime very low charge coupling and above δc, the interaction
shows a very high value, followed by a sharp fall. The different colours are

used for different ratios of t2/t1 [α=1 has been taken]

Interestingly, the spin stiffness constant (Ds) for 2D t-J

model also shows a point of inflection (indicative of a

possible phase transition) at the same δ, where Dc exhibits

the sharp rise [23]. Furthermore, Dc and Ds show almost

identical behaviour for δ > δc, i.e. in the over-doped

regime, which is a expected behaviour of Fermi liquid-like

phases. In the under-doped regime however, the behaviour

of the two stiffness constants are very different. Thus it

can be concluded that the lower doping region represents an

anomalous conducting phase, whereas the over-doped regime

is normal Fermi liquid-like metallic in nature.

The results for 1D t-J model is also quite important. The

quantity Dc in 1D vanishes at δ=0 and δ →0 and exhibits

a maximum in the lower doping region. The peak shifts

to further lower doping as the higher neighbour hopping

amplitudes are increased and reaches the δ →0 limit at critical

values of t2 and t3(see Figs. 2, 4). In a recent paper, we have

shown that in one dimension, Ds displays a high value at δ →0

limit and falls rapidly with increase in doping concentration

[24]. The drastic fall is immediately followed by the formation

of a peak in the under-doped regime [24]. Hence, we see that

Ds and Dc show completely distinct behaviour only in the

very low doping region, whereas they show a similar trend as

doping is slightly increased.

One more point that may be highlighted is that, in our

calculation we do not get any region of negative charge

stiffness, as is expected from the stability criteria (see (5),

(6)). Therefore, the effective interaction between the mobile

charge degrees of freedom never becomes attractive in these

models and the reduction in magnitude of charge stiffness

results in the decrease in effective Coulomb repulsion only.

This reduction in effective Coulomb repulsion with increase

in hole doping in turn gives rise to the enhanced possibility

of fermionic pair formation in doped magnetic systems in 2D,

provided some other attractive pairing mechanism is present.

Thus we have established that the t-J-like models, on their

own, can not produce Cooper pairing in q-space. However,

in some of the recent works, real space pairing has been

studied in the framework of the t-J-like models mostly in

the under-doped phase [44], [45], [46]. Hence, our detailed

calculations and results throw serious doubt on the feasibility

of the momentum-space pairing based only on the t-J-like

models as was advocated earlier [47], [48], [49].
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