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Abstract— Analytical solution of the first-order and third-order 

shear deformation theories are developed to study the free vibration 

behavior of simply supported functionally graded plates. The 

material properties of plate are assumed to be graded in the thickness 

direction as a power law distribution of volume fraction of the 

constituents. The governing equations of functionally graded plates 

are established by applying the Hamilton's principle and are solved 

by using the Navier solution method. The influence of side-to-

thickness ratio and constituent of volume fraction on the natural 

frequencies are studied. The results are validated with the known 

data in the literature. 

Keywords— Free vibration, Functionally graded plate, Navier 

solution method.

I. INTRODUCTION

UNCTIONALLY graded materials (FGMs) are new 

inhomogeneous materials which have widely used in 

many engineering applicants such as nuclear reactors and 

high-speed spacecraft industries [1]. The mechanical 

properties of FGMs vary smoothly and continuously from one 

surface to the other. Typically these materials are made from a 

mixture of ceramic and metal or from a combination of 

different materials. The ceramic constituent of the material 

provides the high-temperature resistance due to its low 

thermal conductivity. The ductile metal constituent on the 

other hand, prevents fracture caused by stresses due to the 

high temperature gradient in a very short period of time. 

Furthermore a mixture of ceramic and metal with a 

continuously varying volume fraction can be easily 

manufactured [2-3]. The analysis of these materials has been 

considered by many researchers. Reddy [4] investigated the 

third-order shear deformation theory (TSDT) of plates for the 

analysis of functionally graded (FG) plates to show the effects 

of the material distribution on the deflections and stresses. 

Praveen and Reddy [5] reported the response of FG ceramic-

metal plates using a plate finite element formulation. Loy et al. 

[6] have analyzed the vibration of FG cylindrical shells based 

on the Love's shell theory. Javaheri and Eslami [7 9] presented 

the mechanical and thermal buckling of rectangular FG plates 
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based on the classical and high-order plate theories. Birman 

[10] studied the buckling problem of an FG composite 

rectangular plate subjected to uniaxial compression.  

The mechanical and thermal buckling analyses of FG 

circular plates are given by Najafizadeh and Eslami [11-13]. A 

refined theory for thermoelastic stability of FG circular plates 

based on the first-order shear deformation plate theory is 

studied by Najafizadeh and Hedayati [14]. Najafizadeh and 

Heydari [15] have analyzed the thermal buckling of FG 

circular plates using higher-order shear deformation plate 

theory. Recently, Batra and Aimmanee [16] employed a 

higher-order shear and normal deformable plate theory and the 

finite element method to analyze the free vibrations and stress 

distribution in a thick isotropic and homogeneous plate. Also, 

Vel and Batra [17] presented an 3-D exact solution for free 

and forced vibrations of simply supported FG rectangular 

plates. They assumed that the plate is made of an isotropic 

material with material properties varying in the thickness 

direction only. The effective material properties at a point 

have estimated from the local volume fractions and the 

material properties of the phases either by the Mori-Tanaka or 

the self consistent scheme. Qian et al. [18-19] have used the 

plate theory for analyzing the static and dynamic deformations 

of thick plates under different edge conditions. The same 

authors have employed a higher-order shear and normal 

deformable plate theory and a Meshless Local Petrov-Galerkin 

(MLPG) method to analyze the static and dynamic 

deformations of an FG plate [20-21]. Woo et al. [22] studied 

the non-linear free vibration behavior of plates made of FGMs 

using the Von Karman theory for large transverse deflection. 

Also, Park and Kim [23] investigated the thermal 

postbuckling and vibration analyses of FG plates. Kim [24] 

discussed the temperature dependent vibration analysis of 

FGM rectangular plates. Altay and Dökmeci [25] reported the 

variational principles and vibrations of an FG plate. They 

employed a hierarchical system of the two-dimensional 

approximate equations to derive systematically the vibrations 

of an FG piezoelectromagnetic plate. Non-linear vibration of a 

shear deformable FG plate has also studied by Chen [26]. He 

used the Runge-Kutta method to obtain the non-linear and 

linear frequencies. The classical plate theory (CPT) neglects 

shear deformation and is the theory that plane sections normal 

to the plate axis remain plane and normal after deformation. 

The first-order shear deformation theory (FSDT) is the 

simplest theory that accounts for non-zero transverse shear 

strain and  
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Fig. 1 Variation of the ceramic volume fraction function 

versus dimensionless thickness with different power .k

incorporates this effect but is often inadequate to account for 

the distortion of the plane normal to the mid-surface, and the 

third-order shear deformation theories (TSDT) are those in 

which the transverse shear stresses are accounted for. Such 

theories can be used to analyses the mechanical problems with 

more accuracy [27]. 

In the present study, free vibration of simply supported 

functionally graded plates has investigated using the first-

order and third-order shear deformation theories (FSDT and 

TSDT). The governing equations of FG plates are established 

using the Hamilton's principle. The Navier solution method 

has used to solve the vibration problem. The material 

properties are assumed to vary through the thickness direction 

according to power law distribution of constituent volume 

fraction. The objective is studying the influence of the shear 

theories and constituent volume fractions on the natural 

frequencies. A comparison of fundamental frequencies 

predicted by the two theories is presented. The results are 

compared and validated with those are in the literature. 

II. FORMULATION

Consider an FG plate with length a, width b, and thickness 

h. The material properties of plate are assumed to be graded 

through the thickness direction. The constituent materials are 

assumed to be ceramic and metal. The volume fractions of the 

ceramic Vc and metal Vm corresponding to the power law are 

expressed as [5] 

cm

k

c VV
h

hz
V 1,

2

2  (1) 

where subscripts m and c refer to the metal and ceramic 

constituents, respectively, z is the thickness coordinate (-h/2

z h/2), and k is the power law index that takes values greater 

than or equal to zero. The variation of the composition of 

ceramic and metal is linear for k=1. The value of k equal to 

zero represents a fully ceramic plate. The variation of the 

ceramic volume fraction function versus dimensionless 

thickness with different power k is plotted in Fig. 1. The 

mechanical properties of FGM are determined from the 

volume fraction of the material constituents. The Young's 

modulus, E, and density of material, , are assumed to change 

in the thickness direction, z, based on the Voigt's rule over the 

whole range of the volume fraction as [5] 
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The Poisson' ratio, , is assumed to be constant across the 

plate thickness. Substituting Eq. (1) into (2), the material 

properties of the FG plate are determined, which are the same 

as the equations proposed by Praveen and Reddy [5] 
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The displacement field for FSDT and TSDT can be written 

as [27] 
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where u, v, and w denote the displacement components in the 

x, y, and z directions, respectively, �x and �y are the rotations 

of the transverse normals about y and x axes, respectively. For 

FSDT c1=0 and for TSDT c1=4/3h2. All of the generalized 

displacements (u0, v0, w0, �x, �y) are functions of x, y, and t.

From the strain-displacement relations appropriate for 

infinitesimal deformations, we obtain 
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The assumed displacement model implies that the 

transverse normal strain, zz, vanishes identically. The stress-
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strain relations for an FG plate using the assumed 

displacement model can be written as 
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where
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The force and moment resultants of FG plate are defined by 
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Here k' denotes the shear correction coefficient. In the terms 

of displacements, we obtain 
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where

2

2
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Here Aij, Bij, and Dij are the extensional, bending extensional 

coupling, and bending stiffnesses, respectively, Eij, Fij, and Hij

are the high-order stiffnesses. 

The governing equations of motion appropriate for the 

displacement field, Eq. (4), can be derived using the 

Hamilton's principle [27] 
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Here ,, yyxx NN  and 
xyN  are the in-plane edge loads, and q is 

the distributed transverse load. The superposed dot denotes 

partial differentiation with respect to time. 

III. THE METHOD OF SOLUTION

Navier solution is used to analyze the free vibration 

problem of simply supported FG plates. For free vibration 

case, we must set q=0. The generalized displacements are 

expressed as products of undetermined functions and known 

trigonometric functions so as to satisfy identically the simply 

supported boundary conditions at x=0,a and y=0,b:

For FSDT: 
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For FSDT: 
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and represent the displacement quantities as 
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where  denotes the natural frequency, and Umn, Vmn, Wmn, Xmn

and Ymn are undetermined coefficients. The representation (16) 

is valid for FSDT and TSDT. Substituting Eq. (16) into (6), 

results into (10), and then into (12) leads to the following 

eigen-value problem 

0)( 2
C  (17) 

where C is the stiffness matrix,  is the inertia matrix, and { }

is column vector of unknown coefficients. To obtain non-

trivial solution, we must set 02
C . By solving the 

achieved equation for , the values of natural frequencies of 

FG plate with simply supported edges will be derived. 

IV. RESULTS

The first-order and third-order shear deformation theories 

(FSDT and TSDT) have been used to analyze the free 

vibration of simply supported FG plates for different values of 

aspect ratios. The material properties are assumed to be 

graded in the thickness direction as a power law index. The 

Navier solution procedure developed in the previous section is 

used to evaluate the natural frequencies. The following 

material properties are used in the analysis: 

Metal: Aluminum E=70 GPa =2707 kg/m3

Ceramic: Zirconia E=151 GPa =3000 kg/m3

One term, namely n=m=1, is truncated in the trigonometric 

functions. The Poisson's ratio is chosen to be 0.3. The non 

dimensionalized natural frequency, �, is considered in the 

form of 
cc Gh /  to analysis the results. To investigate the 

accuracy of the present formulation, comparison with the 

published data is necessary. The values of dimensionless 

natural frequencies of simply supported isotropic rectangular 

plates are presented for two values of width-to-side ratio, b/a,

and one value of side-to-thickness ratio, a/h, by Sirinivas and 

Rao [28] and Reisman and Lee [29] for exact solution and by 

Reddy [30] for classical theory solution without rotatory 

inertia (CPT1) and include rotatory inertia (CPT2), first-order, 

and third-order shear deformation theories (FSDT and TSDT). 

A comparison between these results and the presented results 

(FSDT and TSDT) is shown in Table 1. The compression 

shows that the presented results are in good agreement with 

those are in the literature. The influence of constituents 

volume fraction on the natural frequencies of FG plate is 

studied by varying the value of power index, k. Also, the 

effects of displacement fields on the natural frequencies of FG 

plate are presented by considering the FSDT and TSDT. As 

can be seen, the natural frequencies decreased with increasing 

the value of power index, k. The natural frequencies of 

rectangular plate with ab 2  are very smaller than the other 

one, b=a, and by increasing the value of power index, k, the 

results of two theories are very close to each other. 

The dimensionless natural frequencies of a simply 

supported FG plate against power index, k for various values 

of side-to-thickness ratio, a/h and for 2,1/ ab  are plotted 

in Figs. 2 and 3 based on FSDT and TSDT. The frequencies 

decreased about 75% with increasing the metal percentage of 

material. It is due to, the Young's modulus of ceramic is 

higher than metal, and this is the characteristic of FGMs. Note 

that, as a/h increased, the natural frequencies of both two 

theories decreased. The decrease between natural frequencies 

from a/h=10 to a/h=100 is about 99% for various values of k,

but this decrease will converge to constant values with more 

increase of a/h. Also, when the ratio a/h is small, the 

difference between the results of FSDT and TSDT are more 

than those for other ones. It is interesting to note that, the 

thickness of plate in TSDT effects on transverse shear stresses 

as a coefficient (c1), but in FSDT the transverse shear stresses 

TABLE I

COMPARISON OF NATIONAL FREQUENCIES FOR DIFFERENT MATERIAL DISTRIBUTION

Theory k      

0 0.1 0.5 1 2 10 

10/,1/ haab      

 Exact [28] 0.0932      

 CPT1 [30] 0.0955      

 CPT2 [30] 0.0963      

 FSDT [30] 0.0930      

 TSDT [30] 0.0930      

 FSDT 0.0934 0.0687 0.0431 0.0349 0.0297 0.0242 

 TSDT 0.0920 0.0677 0.0425 0.0344 0.0293 0.0238 

      

10/,2/ haab
       

 Exact [29] 0.0704      

 CPT1 [30] 0.0718      

 CPT2 [30] 0.0722      

 FSDT [30] 0.0704      

 TSDT [30] 0.0704      

 FSDT 0.0706 0.0519 0.0326 0.0264 0.0224 0.0183 

 TSDT 0.0698 0.0513 0.0322 0.0261 0.0222 0.0181 
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(a) (b) 

Fig. 2 Non-dimensionl natural frequencies (�) as a function of the side-to thickness ratio (a/h)

for FG square plates ( ab ), (a): FSDT; (b): TSDT. 

(c) (d) 

Fig. 3 Non-dimensionl natural frequencies (�) as a function of the side-to thickness ratio (a/h)

for FG rectangular plates ( ab 2 ), (c): FSDT; (d): TSDT. 

are constant along the thickness and are independent of 

thickness. In other words, for a certain value of length, with 

increasing the thickness of plate, the difference between 

FSDT and TSDT increases. 

V. CONCLUSION

This study deals with the free vibration of simply supported 

functionally graded plates. The material properties are 

assumed to vary in the thickness direction according to power 

law distribution. The effects of the side-to-thickness ratio, the 

power index of constituent volume fraction, and shear theories 

on the natural frequencies are also discussed. The results show 

that the natural frequencies decrease with increasing the 

power index as well as side-to-thickness ratio. The first-order 

and third-order shear deformation theories (FSDT and TSDT) 

can replaced by each other for thin plates with high accuracy, 

but TSDT has higher accuracy for thick plates, therefore it is 

better to use this theory for thick plates. 
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