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Abstract—In this study, the dispersion of heavy particles line in 

an isotropic and incompressible three-dimensional turbulent flow has 
been studied using the Kinematic Simulation techniques to find out 
the evolution of the line fractal dimension.  The fractal dimension of 
the line is found in the case of different particle gravity (in practice, 
different values of particle drift velocity) in the presence of small 
particle inertia with a comparison with that obtained in the diffusion 
case of material line at the same Reynolds number.  It can be 
concluded for the dispersion of heavy particles line in turbulent flow 
that the particle gravity affect the fractal dimension of the line for 
different particle gravity velocities in the range 0.2 < W < 2.  With 
the increase of the particle drift velocity, the fractal dimension of the 
line decreases which may be explained as the particles pass many 
scales in their journey in the direction of the gravity and the particles 
trajectories do not affect by these scales at high particle drift 
velocities. 

 
Keywords—Heavy particles, two-phase flow, Kinematic 

Simulation, Fractal dimension.  

I. INTRODUCTION 
URBULENT flows consist of eddies of different sizes 
which affect the shape of a line immersed in them.  

Finding the geometry of this line, which may represent the 
boundary between two mixing fluids in a combustion process 
for example, is expected to put some lights on the turbulence 
flow analysis and explains some behavior of objects immersed 
in that flow and because of the fine structure of this line it can 
be presented by using the fractal geometry concept. Also 
understanding the fractal dimension of heavy particle lines is 
important for accurate modeling of the scalar mixing and the 
flamelet propagation aspects of combustion.  

Most of the previous studies have been done for fluid 
element particles, in which the fractal dimension of a material 
line has been found either experimentally or using simulation 
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methods.  In [1], they investigated experimentally the time 
evolution of an initially regular passive dye in three-
dimensional homogeneous turbulence in a line-dispersion.  
They also derived an expression for the fractal dimension of a 
line immersed in homogeneous turbulence that compares very 
well with the experiment at different Reynolds numbers. This 
expression relates the fractal dimension to time and Reynolds 
number: 

2/1

d

Re)
t
t(088.01D +=                              (1) 

where D is the fractal dimension of the line, td is the turnover 
time, the Reynolds number Re=(L/η)4/3, ε is the dissipation 
rate per unit mass, L is the integral length scale and u` is the 
rms value of the turbulence fluctuation.  The fractal dimension 
was found to increase linearly with time at a rate increasing 
with the increase in the Reynolds number.  In [2] they studied 
the fractal dimension of a line embedded in a homogenous 
turbulent flow using a Large Eddy Simulation.  It is shown 
that the fractal dimension of the line increases with time.  The 
simulation results were compared to experiments and theory 
developed by [1].  But this was only validated on a limited 
range of Reynolds numbers.  However in [3], they studied the 
development of the fractal dimension of material lines formed 
from the fluid elements immersed in turbulent flows using 
kinematic simulation which able them to produce high 
Reynolds numbers and simulate the small scales of the 
turbulence.  They validated the equation in [1] for the 
obtained results from kinematic simulation; they found that 
the fractal dimension of a line is a linear relation of time up to 
times of the smallest scale of turbulence. 

The numerical method we use to generate the turbulent 
flow is introduced in II, fractal dimension calculation method 
is outlined in II and the heavy particle equation of motion is 
introduced in III. The simulation parameters used are 
presented in IV and the results for the fractal dimension of 
line immersed in turbulent flow are presented in V.  We 
conclude the paper in VI. 

II. KINEMATIC SIMULATION 
Kinematic Simulation provides the Lagrangian model of 

turbulent dispersion based on a simplified incompressible 
velocity field, where the incompressibility is enforced by 
construction in the generation of every particle trajectory, 
kinematically simulated the Eulerian velocity field which is 
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generated as a sum of random incompressible Fourier modes 
with a proper wavenumber-energy spectrum which has the 
Kolmogorov form.   

As in [4]-[6] the three-dimensional KS turbulent velocity 
field used in this paper is a truncated Fourier series, the sum 
of N random Fourier modes: 
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where Nk is the number of Fourier mode, nk̂  is a random 
vector distributed independently and uniformly over a unit 

sphere nnn k̂kk =  and nn b and a  are chosen randomly 

vectors under certain constrains that they are normal to nk̂ .   

nk  is the modulus of the wavenumber kn so that : 
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where θn ∈[0, π] and φn ∈[0, 2π[ are picked randomly in each 
mode and realization so that the random choice of directions 
for the nth wavemode is independent of the random choice of 
directions for  all others.  The ar  and b

r
  vectors in Eq. (2) are 

random and uncorrelated vectors orthogonal to kn vector with 
their amplitude being chosen according to:  

             E(k)dk2
2

nB
2

nA ==                        (4)   

and to ensure that the velocity field is incompressible (∇.u=0), 
the Fourier coefficients are written as ( )nn ka ˆ×

r
 and 

( )nn kb ˆ×
r

.  The discretization of the wavenumber can be 
achieved by one of the following distributions:  
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because the geometric distribution leads to equally spaced 
energy shells for log(k).  It has been shown that when the 
energy spectrum input has the kolmogorov (-5/3) form, in this 
study we will use an energy spectrum, E(k), which does not 
change with time (non-decaying turbulence) has the following 
form: 
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Then the turbulent velocity fluctuation intensity is:  

∫=
N
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The following definition of the integral length scale of the 
isotropic turbulence has been used: 
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The ratio between the integral length scale to Kolmogorov 

length scale is 
1

N1

k
k
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=  and determined the inertial range 

and the associated Reynolds number which is related to the 
inertial range is  
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It is also possible to introduce a frequency ωn that determines 
the unsteadiness associated with the nth wavemode.  This 
parameter enables us to create 3-D effects in the case of a 2-D 
simulation, to mix up the velocity field and to improve the 
turbulence.  In the 3-D KS field, the previous studies suggest 
that the choice of ωn has no significant influence on most 
statistical properties of two particle diffusion for time less than 
the integral time scale TL.  The frequency ωn is proportional to 
the eddy-turn-over frequency of mode n, and the 
dimensionless constant of proportionality is λ.  It has been 
shown in  [7] that in three-dimensional isotropic KS for two-
particle diffusion, most of the statistical properties are 
insensitive to the unsteadiness parameter's value, provided that 
it rests in the range 0 < λ < 1.  In accordance with these results 
we have not added any unsteadiness term (λ=0) to our KS 
simulations.  One of the most important characteristic times in 
the turbulent flow is the eddy turn over time scale which 
corresponds to the integral length scale and the other is the 
Kolmogorov time scale which corresponds to the Kolmogorov 
length scale.  The eddy turnover time is the time needed for 
the largest eddy to turn around itself and defined as  

          
`u

Lt d =            (10) 

Before the eddy turnover time, the particle remembers its 
initial position, while after this time, the particles are free to 
move randomly.  The Kolmogorov time scale is the time 
needed for a particle to move a distance η when its velocity 
equal to vη and is defined as follows: 

          
η

η
η
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v
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According to [8], a time step equal to 0.1 tη  is small 
enough to ensure that the results are independent of the time 
step.  This technique, KS, has been able to reproduce very 
well some of the Lagrangian properties [7], [9].  The 
computational simplicity of KS allows one to consider large 
inertial sub-ranges and Reynolds numbers.  With this method, 
the computational task reduces to the calculation of the 
trajectory of each particle placed in the turbulent field; each 
trajectory is, for a given initial condition, solution of the 
differential equation: 

)t),t(x(u
dt

)t(dx
E=                 (12)    

where uE is the Eulerian velocity field which is chosen as a 
sum of Fourier modes as in Eq. 2).  The trajectories are 
independent of each other and calculated using the 4th order 
predictor-corrector method (Adams-Bashforth-Moulton) in 
which Runge-Kutta-4 is used to compute the first three points 
needed to initiate Adams-Bashforth's method. This kind of 
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computation does not require the storage of a lot of data with 
very large tables as with direct numerical simulation. 

III. HEAVY PARTICLE EQUATION OF MOTION 
The equation of motion for heavy particles is still the 

subject of current research. Depending on the degree of 
simplification, it can involve different forces acting on the 
particle.  These forces are due to the relative motion between 
the particle itself and the surrounding fluid elements.  Let’s 
consider a heavy particle with its centre positioned at xp(t) at 
time t moves with a velocity v(t) in the surrounding flow field 
of velocity u(xp,t).  The equation of motion of a heavy sphere 
particle can be calculated as: 

      t),Vt),,(u(xF  
dt

dV
m ppacting

p
p ∑=       (13)    

where the RHS of Eq. 13 is the sum of all forces acting on the 
particle.  With some simplifications; the mass density of the 
heavy particle is assumed to be much heavier than the 
surrounding fluid density the radius of the heavy particle 
sphere is assumed to be smaller than the smallest length scale 
of the turbulence the Kolmogorov length scale of turbulence 
then the heavy particle will respond to all scales of the 
turbulent flow and will not affect the turbulence itself, also as 
the radius of the heavy particle sphere is considered to be 
much larger than the fluid molecules free path then the 
particle aerodynamic response time much larger than the mean 
molecular collision time and there is no Brownian motion 
effect, the Reynolds number based on it being much smaller 
than unity then one can consider the drag force on the heavy 
particle as Stockesian drag, finally, the concentration of 
particles in the fluid flow field must be small enough to make 
sure that the interaction between the particles could be 
ignored, the equation of motion of a heavy particle derived in 
[10] can be simplified to the form used in  [11]-[12], which 
reduces the computational cost.  In a frame of reference 
moving with the center of the particle, the particle acceleration 
can be described as follows: 

u)-(va6- gm 
dt
dv m pp μπ=              (14) 

where mp is the mass of the particle, g is the gravity, a is the 
spherical particle's radius and μ is the dynamic viscosity of the 
fluid, another form of Eq. 14 is: 

a

dVv-u
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dv

τ
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where τa = mp/6πaμ is the particle's aerodynamic response 
time and Vd = τa g is the particle's terminal fall velocity or drift 
velocity.  Because the dispersion is controlled by the large 
scale eddies, the parameters Vd and τa can be rescaled by the 
turbulence rms velocity, u', and the largest eddy turnover time, 
td, we therefore introduce the two usual dimensionless 
parameters: the Stokes number, St = τa / td, which expresses 
the ratio between the particle's response time and the 
turbulence characteristic time. The drift velocity parameter, 

W=Vd / u’, which is the ratio between the particle's drift 
velocity and the turbulence rms velocity.  

IV. FRACTAL DIMENSION CALCULATION 
Fractal geometry does not replace the classical geometry 

but enriches and deepens it, high performance computers 
allow one to build fractal shapes and calculate their fractal 
dimension.  The modified box counting method (MBCM) is 
used here because it is the most popular way of estimating the 
fractal dimension because of its simplicity.  This method was 
refined over the years to simplify the Hausdorff dimension, in 
the box-counting method, the fractal object is covered with a 
network of boxes and its principle is based on the fact that the 
number of boxes (Nε) having a side length (ε) needed to cover 
the surface of this fractal object varies as ε-D, where D is the 
estimation of the fractal dimension of the object under study, 
as in Fig. 1. 

 

 
Fig. 1 Box Counting method 

 
While the magnitude of the box side is changed in each step 
this number of boxes (Nε), necessary for this coverage of the 
object perimeter, is detected.  The relation between the 
number of boxes and the magnitude of the box side 
determines the value of the fractal dimension D as follows: 

)1log(
Nlog

D
ε

= ε                      (16) 

using this formula and by recoding the number of boxes with 
the box side, one is able to find the fractal dimension of the 
heavy particle line after a certain time step by computing the 
slope of Equation 16.  
 

V. SIMULATION PARAMETERS FOR THE HEAVY PARTICLES 
LINE  

For each of our simulations, the particle equation of motion 
Equation 14 was integrated over 4000 realizations of the flow 
the initial velocity of the heavy particle is set to be the same as 
that of the fluid element.  All simulations reported here were 
performed using two hundred Fourier modes (N=200).  The 
particle drift velocities are set to be 0.2, 1 and 2 at St=0.02 in 
addition to the case of material line diffusion.  Runs have been 
made for kN/k1=36, 100, 178 and 1000, the fractal dimension 
is calculated as a function of the time evolution.  The studied 
line is released in a horizontal plane where z = -0.25L and 
from point (-2.5L, 2.5L) to point (2.5L, 2.5L).  
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VI. RESULTS 
The fractal dimension was calculated for different values of 

particles inertia to investigate its significance in the dispersion 
of heavy particles line.  The fractal dimension of the heavy 
particle line was calculated at different time steps. 
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Fig. 2 Fractal dimension of heavy particle lines as a function of the 

normalized for kN/k1=36 and different particle drift velocities 
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Fig. 3 Normalized fractal dimension of heavy particle lines as a 

function of the normalized time for kN/k1=36 and different particle 
drift velocities 
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Fig. 4 Fractal dimension of heavy particle lines as a function of the 
normalized time for kN/k1=100 and different particle drift velocities 
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Fig. 5 Normalized fractal dimension of heavy particle lines as a 

function of the normalized time for kN/k1=100 and different particle 
drift velocities 
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Fig. 6 Fractal dimension of heavy particle lines as a function 
of the normalized time for kN/k1=178 and different particle 

drift velocities 
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Fig. 7 Normalized fractal dimension of heavy particle lines as a 

function of the normalized time for kN/k1=178 and different particle 
drift velocities 
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Fig. 8 Fractal dimension of heavy particle lines as a function of the 
normalized time for kN/k1=1000 and different particle drift velocities 
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Fig. 9 Normalized fractal dimension of heavy particle lines as a 
function of the normalized time for kN/k1=1000 and for different 

particle drift velocities 
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Fig. 10 Normalized fractal dimension of heavy particle lines as a 

function of the normalized time for different kN/k1, different particle 
drift velocities and the slope of line 1 
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