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Abstract—Post growth annealing of solution grown ZnO 

nanowire array is performed under controlled oxygen ambience. The 
role of annealing over surface defects and their consequence on 
dark/photo-conductivity and photosensitivity of nanowire array is 
investigated. Surface defect properties are explored using various 
measurement tools such as contact angle, photoluminescence, Raman 
spectroscopy and XPS measurements. The contact angle of the NW 
films reduces due to oxygen annealing and nanowire film surface 
changes from hydrophobic (96°) to hydrophilic (16°). Raman and 
XPS spectroscopy reveal that oxygen annealing improves the crystal 
quality of the nanowire films. The defect band emission intensity 
(relative to band edge emission, ID/IUV) reduces from 1.3 to 0.2 after 
annealing at 600 °C at 10 SCCM flow of oxygen. An order 
enhancement in dark conductivity is observed in O2 annealed 
samples, while photoconductivity is found to be slightly reduced due 
to lower concentration of surface related oxygen defects.    
 

Keywords— Zinc Oxide, Surface defects, Photoluminescence, 
Photoconductivity, Photosensor and Nanowire thin film.  

I. INTRODUCTION 
NE dimensional nanostructures are the most promising  
materials for variety of optoelectronic applications 

ranging from sensing devices, LEDs to solar cells [1]–[3]. The 
nanowire array films offer the most suitable design due to 
availability of high surface area which can effectively 
modulate the optical and electronic characteristics [4]. The 
defect states arise due to surface species/defects and ultimately 
modify the charge carrier mobility and concentration which 
results the alteration of electrical conductivity [4]. 
Photoluminescence spectra of ZnO, generally consists of two 
emission peaks, one is in UV range called as band-edge 
emission and second is a broad emission peak in visible region 
[5]. The unstructured broad peak in visible range is related to 
defect states emission, which convoluted by green, yellow and  
red emission peaks. The defect states and their related 
emission is a debatable topic and various hypotheses have 

 
Ajay Kushwaha is with the Department of Physics, IIT Bombay, Powai, 

Mumbai- 400076 India (phone: +91-022-2576-4541; e-mail: 
kushwaha09@gmail.com).   

Heman Kalita is with the Department of Physics, IIT Bombay, Powai, 
Mumbai- 400076 India (phone: +91-022-2576-4541; e-mail: 
hemenkalita@gmail.com).  

M. Aslam is with the Department of Physics and National Centre for 
Photovoltaic Research and Education (NCPRE) IIT Bombay, Powai, Mumbai- 
400076 India (Corresponding Author phone: +91-022-2576-7585; e-mail: 
m.aslam@iitb.ac.in). 
 

been adopted to explain emission phenomenon [6], [7]. The 
origin of green emission is more controversial, numerous 
defects like Zn interstitial, oxygen vacancies, Zn vacancies, 
oxygen interstitial and impurities are considered to be cause 
[7], [8]. Oxygen vacancies are the widely accepted defects 
types responsible for green emission in solution grown 
nanowires [9]. The charged oxygen vacancies are higher in 
concentration at nanowire surface (singly and double charged 
oxygen vacancies) hence nanowire films shows intense defect 
emission peak [10].  Surface modifications via chemical 
process or post growth techniques were adopted to control the 
surface defects of ZnO nanowire [11], [12]. Post growth 
annealing treatment of ZnO film in oxygen atmosphere is also 
explored previously [11], [13]–[15]. However, controlled 
oxygen annealing of ZnO NW films and correlation of their 
optical and electrical properties with surface defects is not 
studied well. Therefore, in present report, we have 
investigated the oxygen annealing effect on ZnO nanowire 
surface properties and photoconductivity.  Surface of ZnO 
nanowire is extensively modified after oxygen heat treatment 
and it changes from hydrophobic to hydrophilic. Oxygen 
annealing results a good control over the surface related 
defects (mainly oxygen vacancies) and reduces defect 
emission from 1.3 to 0.2 (UV emission v/s defect emission 
intensity). The dark conductivity of O2 annealed NW film 
increases by an order of magnitude in comparison to as-grown 
NW films. Photosensitivity of nanowire film decrease due to 
reduction in defect states, but the photoresponse time is 
improved due to O2 annealing.      

II.   EXPERIMENTAL SECTION 
Solution grown nanowire films were annealed at different 

temperatures and different oxygen gas flow rates [16]. The 
flow rate of oxygen was controlled from 5- 50 SCCM 
(Standard Cubic Centimeters per Minute) using mass flow 
controller and the annealing temperature was varied from 200 
to 600 °C with heating rate of 10 °C using a programmable 
tube furnace. The tube furnace with one inch quartz tube 
diameter was utilized which was part of the wall-mounted 
CVD set up. Morphological analysis of ZnO nanowire was 
done using JEOL-JSM 6390 scanning electron microscope.  
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Fig.1 (a) Large area SEM image, (b) magnified SEM image and (c) cross-sectional view of ZnO nanowire film. (d) HRTEM image of single 
ZnO nanowire and lattice fringe. (e) XRD pattern of ZnO nanowire film (inset shows the selected area electron diffraction pattern of single 

NW) 
 

Crystallographic measurements were performed on Xpert 
PANAlytic X-ray diffractometer using Cu Kα radiation (λ = 
0.15404 nm) and scan step of 0.017 (2θ/sec). HRTEM (JEOL 
JEM 2100F, field emission gun transmission electron 
microscope (operated at an accelerating voltage of 200 kV) 
measurements were performed to confirm the structural and 
morphological characteristics of ZnO nanowires. The GBX 
Digidrop was used to measure the contact angle of a drop of 
water placed on ZnO NWs sample. The Keithley dual channel 
current-voltage source meter (model: 2602A) was utilized for 
four probe conductivity (I-V) measurements. The UV light 
(365 nm wavelength and 10 mW power) is typically 
illuminated normal to the nanowire film surface. PL 
measurement was performed using VARIAN CARY-eclipse 
fluorescence spectrophotometer under 290 nm excitation. 

III. RESULTS AND DISCUSSION 

A. Morphological and Structural Investigations 
A large area SEM image of ZnO nanowire array film is 

given in Fig. 1a. The nanowires are uniformly distributed and 
well oriented on the ZnO quantum dot template glass 
substrate. Fig. 1b shows the magnified view of these array, the 

nanowires have 250 ± 60 nm diameter with hexagonal faceted 
shape. The cross-sectional image of the NW films clearly 
demonstrated that film is highly oriented and grown normal to 
the substrate surface with 4 µm long nanowire. HETEM image 
shows that the nanowire diameter is 250 nm as demonstrated 
in Fig.1d, the lattice spacing is observed using high resolution 
imaging and is approximately 0.27 nm. X-ray diffraction 
pattern of NWs film is presented in Fig.1e, the plot shows very 
strong orientation along (002) plane, which verifies the c-axis 
oriented growth. The XRD pattern matched with the bulk 
JCPDS [00-020-1437], this confirms the as-grown NWs are 
wurtzite in nature. The selected area electron diffraction 
pattern (inset of Fig. 1e) demonstrates single crystalline nature 
of ZnO NWs.     

B. Surface Properties of ZnO Nanowire Films 
The surface wettability test is useful to understand the 

suitability of NWs based electrodes in dye sensitized solar cell 
and other biomedical applications [17]-[18]. The surface 
properties of ZnO nanowire films are investigated by 
measuring the contact angle of distilled water. Fig. 2 shows 
the contact angle measurement of as-grown and oxygen 
annealed samples. The as-grown NWs film is hydrophobic in 
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Fig. 4 (a) Room temperature PL spectra, (b) current-voltage profile of dark conductivity measurement and (c) photoconductivity measurement 
of as-grown and oxygen annealed NWs films (at various temperatures). (d) Dark and photo-conductance as-grown and annealed NWs films 

 

Fig. 5 (a) Photoluminescence measurement of ZnO nanowire films annealed at various flow rate of oxygen, (b) current-voltage profile of dark 
conductivity measurement and (c) photoconductivity measurement of as-grown and oxygen annealed NWs films (at various flow rate of 

oxygen). (d) Dark and photo-conductance as-grown and annealed NWs films 
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Electron flow becomes easier due to reduction of barrier 

height between inter-nanowire junctions. The photosensitivity 
of annealed sample decreases due to reduction of surface trap 
levels [30].  Further, role of oxygen flow rate on the defect 
states and electrical conductivity is studied. Three different 
oxygen flow rate are selected for annealing experiments (5, 25 
and 50 SCCM).  Fig. 5a compares the PL measurements, the 
high flow rate annealed sample results decrease in band edge 
emission and green emission both. However, red emission 
intensity is relatively high which results due to creation of 
excess oxygen and oxygen interstitial defects. I-V 
measurements of above samples are given in Fig. 5b.  Increase 
flow rate of oxygen reduces the dark conductivity of the film 
from 1.19µS to 0.5µS (flow rate changes from 5 to 50 
SCCM).  Photoconductivity slightly enhanced at higher flow 
rate annealing, Fig. 1d compares the dark and photo-
conductance of oxygen annealed sample of different flow rates 
annealing. The UV light sensitivity increases in very small 
amount in high flow rate annealed samples.    

D. Time Dependent UV Photoresponse 
Time resolved photoresponse provides important 

information about surface properties of the NW films.  
 
 

 
Fig.6 Time resolved UV light photoresponse of as-grown and oxygen 
annealed ZnO nanowire array films (a) at various temperatures and 

(b) at various gas flow rate 
 

Nanowire surface properties play an important role to 
control the photoresponsivity due to availability of high UV 
light active area in NWs [30]. The surfaces oxygen desorption 
and re-adsorption mainly governs the current rise and decay 
profile. Fig. 6a represents the UV light ON/OFF response of 
as-grown and annealed ZnO nanowire films. The high 
annealing temperature renders lesser response time constant 
(exponential fitting results 70 sec for 600 °C annealed sample 

and 554 sec for asgrown), however, the change in magnitude 
of the photocurrent is high in as-grown case. The fast 
photoresponse in annealed samples is observed due to lesser 
involvement of surface processes and reduced surface traps 
[30]. The recovery of dark current (UV excitation OFF) is 
slow in as-grown NWs as shown in Fig. 6a. High oxygen 
vacancy defects at the as-grown nanowire surface creates high 
surface potential barrier to prevent recombination of electron 
and surface trapped holes. The slow recombination process 
causes persistency in photocurrent of ZnO nanowire films 
[30]. Annealing reduces the photocurrent persistency and 
higher temperature annealing shows high reduction in the 
value of PPC. Flow controlled annealing shows that high flow 
rate annealed samples have lesser change in photocurrent.  
Fig. 6b show that persistency in photocurrent is higher in high 
flow rate annealed sample due to relatively high defects states. 

IV. CONCLUSION 
Oxygen annealing has shown modified surface properties of 

ZnO nanowire films. Solution grown nanowire NWs are found 
oxygen deficient and O2 annealing improves the oxygen 
content in the films. Highly crystalline and good quality NWs 
film is produced after annealing in oxygen atmosphere. Defect 
emission intensity has been reduced but is not fully 
suppressed. Electrical conductivity of NWs films is also 
improved due to less scattering of charge carriers at NWs 
boundaries (grains) and reduction of surface depletion barrier.  
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