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 
Abstract—In this numerical study, effects of using Al2O3-water 

nanofluid on the rate of heat transfer have been investigated. Physical 
model is a square enclosure with insulated top and bottom horizontal 
walls, while the vertical walls are kept at different constant 
temperatures. Two appropriate models are used to evaluate the 
viscosity and thermal conductivity of nanofluid. The governing 
stream-vorticity equations are solved using a second order central 
finite difference scheme, coupled to the conservation of mass and 
energy. The study has been carried out for the nanoparticle diameter 
30, 60 and 90 nm and the solid volume fraction 0 to 0.04. Results are 
presented by average Nusselt number and normalized Nusselt number 
in different range of φ and D for mixed convection dominated 
regime. It is found that different heat transfer rate is predicted when 
the effect of nanoparticle diameter is taken into account. 
 

Keywords—Nano-fluid, nanoparticle diameter, heat transfer 
enhancement, square enclosure, Nusselt number. 

I. INTRODUCTION 

HE main restriction of common fluids used for heat 
transfer application such as water, ethylene glycol, 

mineral oil or propylene glycol is their low thermal 
conductivity. Nano-fluid, which is a mixture of nanosize 
particles suspended in base fluid, has a superior thermal 
conductivity compared to the base fluid [1]. The nanofluid can 
be used to various engineering applications such as solar 
collectors, heat exchangers, materials processing, cooling of 
electronic devices, crystal growth, metal coating and casting, 
and nuclear system cooling [2]-[4].  

There have been many investigations in the past decade on 
the natural and combined convective heat transfer and fluid 
flow in lid-driven square enclosure. Reference [5] considered 
the buoyancy-driven heat transfer in a two-dimensional 
chamber with different aspect ratio and filled with different 
types of nanoparticles for the Rayleigh numbers of 103 to 
5×105 using the finite volume method. They concluded that 
the existence of the nanoparticles resulted in an increase in the 
rate of heat transfer and average Nusselt number for the whole 
range of Rayleigh number. Reference [6] performed a 
numerical study of the heat transfer performance of nanofluids 
inside two-dimensional rectangular enclosures. Their results 
indicated that increasing the volume fraction of nanoparticles 
produced a significant enhancement of the average rate of heat 
transfer. Also their results showed that the variation of average 
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Nusselt number with increasing the volume fraction of 
nanoparticles is linear in two studied cases. Reference [7] 
investigated the laminar natural convection flow through a 
square inclined enclosure filled with a CuO nanofluid. They 
found that heat transfer in the cavity increases by adding 
nanoparticles. Also their results showed that the rate of 
increase is greater for the enclosures with low Rayleigh 
number. Reference [8] conducted a study of steady laminar 
mixed convection flow in single and double lid square cavities 
filled with water–alumina nanofluid using two viscosity 
models. Their results showed that a significant heat transfer 
enhancement could be obtained by increasing the nanoparticle 
volume fractions at moderate and large Richardson number 
using both nanofluid models.  

Something that is common in most of the cited numerical 
study on nanofluid combined convection heat transfer 
problems is the use of the Maxwell-Garnett thermal 
conductivity model [9] for a nanofluid and hence, predict 
enhancement of heat transfer because of the presence of 
nanoparticles and thermal conductivity coefficients of base 
fluid and nanoparticles. This model does not consider main 
mechanisms for heat transfer in nanofluids such as Brownian 
motion and does not consider nanoparticle size or temperature 
dependence. However, it is evident that the use of the accurate 
fundamental model for evaluating the thermal conductivity of 
nanofluids can be very influential. A number of researches 
have performed in comparative study of variable thermal 
conductivity models in various configurations. Reference [10] 
investigated the effects of thermal conductivity of Al2O3-water 
nanofluid on heat transfer enhancement in natural convection. 
Two different thermal conductivity models namely [11] and 
[9] evaluated by comparing their predicted results on Nusselt 
number. He indicated that at Ra≥104, the difference in Nusselt 
number between the Maxwell-Garnett [9] and Chon et al. 
model [11] prediction was small. However, there was a 
deviation in prediction at Ra=103 and this deviation becomes 
more significant at high volume fraction of nanoparticles. 
Similar comparative investigations with pair of models have 
been reported by [12]–[17]. 

The main motivation of this study is to investigate 
numerically the rate of heat transfer on the hot wall of square 
enclosure utilized with water-Alumina nanofluid and its effect 
on combined convections heat transfer. In order to achieve this 
objective, the model of Masoumi et al. [18] is employed for 
viscosity of nanofluid while Chon et al. [11] model is used to 
evaluate the thermal conductivity of nanofluid. The results and 
enhancement in heat transfer rate will be obtained for a wide 
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horizontal walls of the enclosure were kept insulated while the 
right and left walls were maintained isothermally, however the 
temperature of the left wall was higher than the right wall. The 
governing equations were given in term of the stream 
function-vorticity formulation in the non-dimensionalized 
form and then solved numerically by second-order central 
difference scheme. The model of [18] is employed for 
viscosity of nanofluid while thermal conductivity of nanofluid 
is evaluated by Chon et al. [11] model. In these models, the 
effects of nanofluid bulk temperature, nanoparticles size, 
nanoparticles volume fraction and Brownian motion were 
incorporated. The main findings are listed as follows: 
 The Nusselt number and thus heat transfer from the left 

wall of enclosure was enhanced with increasing volume 
fraction of nanoparticle.  

 Heat transfer in square enclosure was enhanced by 
decreasing the value of nanoparticle diameter keeping 
constant the other parameters. 
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