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 
Abstract—A theoretical study has been presented to describe the 

boundary layer flow and heat transfer on an exponentially shrinking 
sheet with a variable wall temperature and suction, in the presence of 
magnetic field. The governing nonlinear partial differential equations 
are converted into ordinary differential equations by similarity 
transformation, which are then solved numerically using the shooting 
method. Results for the skin friction coefficient, local Nusselt 
number, velocity profiles as well as temperature profiles are 
presented through graphs and tables for several sets of values of the 
parameters. The effects of the governing parameters on the flow and 
heat transfer characteristics are thoroughly examined. 
 

Keywords—Exponentially shrinking sheet, magnetic field, mixed 
convection, suction. 

I. INTRODUCTION 

HE problems of flow and heat transfer in the boundary 
layers of a continuous stretching/shrinking surface have 

attracted considerable attention of researchers due to their 
numerous applications in industrial manufacturing processes. 
Some of the applications are extraction of polymer sheets, 
paper production, hot rolling and glass-fiber production. 
Sakiadis [1], [2] first initiated the study of boundary layer flow 
over a stretched surface. The problems in [1] and [2] are 
extended to discuss the various aspects of flow and heat 
transfer characteristics by many researchers [3]-[5]. The effect 
of suction or injection on the boundary layer flow and heat 
transfer over a continuously stretched surface has motivated 
the works of Fox [6] and Chen and Char [7]. Later, Gupta and 
Gupta [8] emphasized that the stretching of the sheet may not 
necessarily be linear. The study of exponential variations of 
stretching velocity and temperature distributions in the flow of 
stretching surface has been initiated by Magyari and Keller 
[9]. The extended work of Magyari and Keller [9] have been 
reported by several reseachers such as Elbashbeshy [10], Khan 
and Sanjayanand [11], Sanjayanand and Khan [12], Sajid and 
Hayat [13], and Partha et al. [14].  
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Recently, the boundary layer flow induced by shrinking 
sheet has gained considerable interest. For the shrinking sheet 
flow, the fluid attracted towards a slot and the vorticity 
generated at the shrinking sheet is not confined within a 
boundary layer and a steady flow is not possible unless 
adequate suction is applied at sheet [15]. The pioneering study 
of the flow due to the shrinking sheet was first observed by 
Miklavčič and Wang [16]. Some of the investigators focused 
their work on the effect of magnetic field on the boundary 
layer flow and heat transfer over a shrinking sheet [17]-[23]. 
The first attempt of studying the problem of boundary layer 
flow induced by an exponentially shrinking sheet was made by 
Bhattacharyya [24]. In the earlier study, Bhattacharyya [24] 
obtained the dual solutions when the mass suction parameter s 
satisfies the condition   and consequently for 

  the flow has no solution. The work by 
Bhattacharyya [24] is extended by Rohni et al. [25], by adding 
the effect of buoyancy force. Rohni et al. [25] found that the 
presence of buoyancy force would contribute to the existence 
of triple solutions to the flow and heat transfer.  

Motivated by the analyses of Rohni et al. [25], we 
investigate the effects of magnetic field on the flow and heat 
transfer characteristics of a viscous fluid over an exponentially 
shrinking sheet with variable temperature distribution. We 
employed similarity transformation to reduce the governing 
nonlinear boundary layer equations to nonlinear ordinary 
differential equations. The numerical solutions are obtained by 
using the shooting method. The effects of the physical 
parameters on the velocity profiles, temperature profiles, skin 
friction coefficient and local Nusselt number are analysed. 

II. MATHEMATICAL FORMULATIONS  

Consider the two-dimensional incompressible, viscous and 
electrically conducting fluid over an exponentially permeable 
shrinking surface (see Fig. 1), with the effect of magnetic 
field. The x-axis runs along the shrinking surface in the 
direction opposite to the sheet motion and the y-axis is 
perpendicular to it. It is assumed that the surface temperature 
is wT  and the temperature of the fluid at infinity is ,T where 

wT T  corresponds to the assisting flow case (heated sheet) 

and the presence of opposing flow case is when wT T  

(cooled sheet). A transverse magnetic field is assumed to be 
applied in the y-axis. Under the assumption of Boussinesq and 
boundary layer approximations, the flow and heat transfer 
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problems are governed by the following equations: 
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where u and v are the components of velocity in the x and y 
directions, respectively, υ = μ ⁄ρ is the kinematic viscosity, μ is 
the viscosity, ρ is the fluid density, g is the acceleration due to 
gravity, β is the thermal expansion coefficient, σ is the 
electrical conductivity, α is the thermal diffusivity and T is the 
temperature of the fluid. In (2) we choose the special form of 

magnetic field    2
0 .x LB x B e  

The appropriate boundary conditions are 
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where 0wU   is the velocity of the shrinking surface and 

  0w x   is the wall mass suction velocity. 

 

Fig. 1 Physical model and coordinate system 
 

We introduce new similarity variables as follows:    
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By substituting (5) into (1)–(3), we obtain nonlinear 

ordinary differential equations: 
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and (4) reduce to boundary conditions: 
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where 2 2
02 wH B L U   is the Hartman number, Pr    

is the  Prandtl number, 0s   is the suction parameter and 
2ReGr 

 
is the constant mixed convection parameter, 

where 3 2
0TGr g T L   is the Grashof number and 

Re wU L   is the Reynolds number. It should be noticed that 

0    corresponds to assisting flow, 0 
 
corresponds to 

opposing flow and 0   corresponds to forced convection 
flow. 

The physical quantities of interest in the present problem 
are the skin friction coefficient Cf and the local Nusselt 
number Nux, which are given by 
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Substituting (5) into (9), we get 
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III. RESULTS AND DISCUSSION  

Equations (6) and (7) subject to (8) were solved numerically 
using the shooting method. The numerical values of the skin 
friction coefficient (0)f   and the local Nusselt number 

(0)   as well as the velocity profile ( )f   and temperature 

profile ( )   are obtained for various values of the Hartmann 

number H, the suction parameter s, and the mixed convection 
parameter λ. To assess the accuracy of the numerical method, 
we compare the present results with those obtained by 
Bhattacharyya [24] and Rohni et al. [25] in Table I. In this 
table, the comparison is made for the non-magnetic case 

0,H   non-buoyant flow 0,  and when Pr 1. This table 

shows the comparison for the value of the critical suction 
parameter sc and singularity point of suction parameter sa. The 
values of sc, which connect the upper branch and lower branch 
are depicted from the graphs of the skin friction coefficient 

(0)f   and the local Nusselt number (0)   against s. 

Discontinuity points in the lower branch, which determined 
the singularity points are obtained from the variations of 

(0)   versus s. As a conclusion, the present values of sc and 

sa are in good agreement with those obtained by Bhattacharyya 
[24] and Rohni et al. [25]. Therefore, the good comparison 
gives us much confidence in our theoretical study and 
numerical computation. In this paper, we focus on the problem 
of mixed convection in the case of when the flow is opposing 
and assisting with the effect of magnetic field. 

The effect of magnetic field and suction on the flow and 
heat transfer in the case of when the flow is opposing ( 0  ) 
have been depicted in Figs. 2−5. The variation of the 
dimensionless skin friction coefficient (0)f  and the local 

Nusselt number −(0)′ߠ against s when Pr 1  and 0.5    
are displayed in Figs. 2 and 3. In this case, four solutions exist. 
The first and second solutions are combined at the critical 
point sc, whereas the third solution continues until it reaches 

0s   (impermeable surface). The fourth solutions occur at 
large values of the suction parameter s. 

Next we tabulate the values of the skin friction coefficient 
and local Nusselt number for various values of s for λ = −0.5 
in Table II. It can be seen from Table II that larger H and s 
values imply higher values of (0)f   and (0)   for the first 

solution. The values of (0)f  and (0)   are consistently 

reduced by the presence of magnetic field in the second, third, 
and fourth solutions.  

Figs. 4 and 5 show the velocity ( )f   and temperature 

( )   profiles when 1.    From this figure, we notice that 

among all the profiles, the third solution has the largest 
magnitude of velocity, at the point of near to the shrinking 
wall. Then, negative velocity ( )f   in all profiles tend to 

achieve a constant value, namely zero. The temperature     
of fourth solution profile is initially decreasing and goes to a 
certain negative value, then for larger η the temperature starts 
to increase.  

To study the flow and heat transfer characteristics of the 
assisting flow case ( 0  ), we plot the skin friction 
coefficient (0)f   and the local Nusselt number −(0)′ߠ against 

s when λ = 1 in Figs. 6 and 7. Similar to the case of opposing 
flow, four profiles are obtained. The critical point sc is an 
intersection point between the second and third solution 
profiles. The first and fourth solutions continue until s = 0 for 

(0)f  and −(0)′ߠ.  

The values of (0)f   and (0)   for several values of s 

when λ = 1 are tabulated in Table III. From Table III, it is 
clear that the skin friction coefficient increases with the 
increase of magnetic field in the first, second and third 
solutions. On the other hand, as H increases, the value of 

(0)f   decreases for the fourth solution. The values of the 

local Nusselt number increase with the increase of the rate of 
magnetic field, which is displayed in Table III. This statement 
is true for the first, second and fourth solutions. When we 
consider the third solution, the values of the local Nusselt 
number always decrease with increasing H. Further, Table III 
shows that the values of the skin friction coefficient (0)f  and 

the local Nusselt number −(0)′ߠ increase with an increase of 
the rate of suction. 

The graphs of the velocity profiles ( )f   are depicted in 

Fig. 8. From this figure, the velocity increases with an increase 
in η for the first solution. The velocity profiles ( )f   of the 

second and third solutions are initially decreasing at the point 
near to the shrinking wall. For larger value of η, these two 
solutions start to increase until they approach zero value. Fig. 
9 depicts the variations on the temperature profiles. From Fig. 
9, the temperature at a point for the fourth solution is found to 
increase initially, but it decreases for a large value of η. The 
temperature     of second solution profile is decreasing near 

to the shrinking sheet, then the temperature starts to increase 
significant little away from the shrinking sheet. 

The illustrations of (0)f   and (0)   versus mixed 

convection parameter λ by adding the effects of suction are 
shown in Figs. 10 and 11, respectively. In Fig. 10, when the 
convection tends to become the assisting flow case, all the 
profiles show the increment in the values of the skin friction 
coefficient. Some profiles show that the local Nusselt number 
increases or decreases infinitely when λ closes to 0. The 
negative values of the skin friction coefficient (0)f   show 

the occurrence of reverse flow; which means that there is a 
velocity overshoot in the boundary layer. Heat transfer from 
the wall to the ambient fluid is in the case of (0) 0,    
whereas reverse heat flow is indicated by (0) 0.    From 

Figs 10 and 11, four solutions exist for the variations of 
(0)f   and (0)   in the case of λ ≠ 0. But, dual solutions 

only occur when λ = 0 in the variations of the local Nusselt 
number. 

 
 
 
 
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:9, 2014

1608

 

 

TABLE I 
COMPARISON OF CRITICAL SUCTION PARAMETER SC AND SINGULARITY POINT 

OF SUCTION PARAMETER Sa 

 Parameters 

sc sa 

Bhattacharyya [24] 2.266684 - 

Rohni et al. [25] 2.2665 Between 2.3378 and 2.3379 

Present 2.26662 Between 2.33773 and 2.33776 

 
TABLE II 

VALUES OF SKIN FRICTION COEFFICIENT AND LOCAL NUSSELT NUMBER 

FOR OPPOSING FLOW CASE  
s (0)f    (0)   

H = 0.28  H = 0.3  H = 0.28  H = 0.3

3.6 2.8475 
(-1.7097) 
{-4.9553} 
[2.6356] 

 2.8555 
(-1.7113)  
{-5.0030}  
[-0.7361]  

2.7435 
(-5.1319)  
 {1.6824}  
[8.8545]  

 2.7448 
(-5.2423)  
{1.6320}  
[5.9416]  

3.7  2.9784 
(-2.0471) 
{-5.3349} 
 [2.6580] 

2.9860 
(-2.0486)  
{-5.3839}  
[-0.7320]  

 2.8794 
(-6.1313)  
{1.7448}  
[9.7626]  

2.8805 
(-6.2529) 
{1.6940} 
[6.8006] 

3.8 3.1064 
(-2.4069)  
{-5.7441}  
[2.6131]  

3.1135 
(-2.4085)  
{-5.7943} 
[-0.6967] 

3.0117 
(-7.2491) 
{1.8122}  
 [10.7240]  

3.0126 
(-7.3827) 
{1.7611} 
[ 7.7951] 

3.9 3.2318 
(-2.7904)  
{-6.1843}  
[2.4624] 

 3.2386 
(-2.7920)  
{-6.2355}  
[-0.6166]  

3.1411 
(-8.4961)  
{1.8839}  
[11.7213]  

3.1419 
( -8.6423) 
{1.8327} 
[8.9526] 

4.0 3.3551 
(-3.1985)  
{-6.6569}  
[2.1036]  

3.3616 
(-3.2002)  
{-6.7088}  
[-0.4698]  

 3.2679 
(-9.8834) 
{1.9594} 
[12.6865]  

 3.2687 
(-10.0430) 
{1.9080} 
[10.3084] 

*      ( )  Second solution, { }Third solution  and   [ ] Fourth solution 
 

TABLE III 
VALUES OF SKIN FRICTION COEFFICIENT AND LOCAL NUSSELT NUMBER 

FOR ASSISTING FLOW CASE  
s (0)f    (0)   

H = 0.28  H = 0.3  H = 0.28  H = 0.3

3.6  3.9287 
(-1.2402) 
{-1.2077} 
[0.5836] 

 3.9338 
(-1.2318) 
{-1.1308} 
[0.2153] 

 2.8980 
(4.3046) 
{2.0941} 
[ 0.1568] 

 2.8986 
(4.4399) 
{1.8855} 
[0.3907] 

3.7  4.0138 
(-1.5867) 
{-1.6475} 
[0.6728] 

 4.0188 
(-1.5796) 
{-1.5899} 
[ 0.2564] 

3.0161 
(5.0442) 
{2.0933} 
[-0.2097] 

 3.0166 
(5.1648) 
{1.9294} 
[-0.0199] 

3.8 4.1001 
(-1.9527) 
{-2.1323} 
[0.8328] 

4.1050 
(-1.9468) 
{-2.0892} 
[0.3324] 

3.1334 
(5.8033) 
{2.1264} 
[-0.6312] 

3.1339 
(5.9190) 
{1.9899} 
[-0.3924] 

3.9  4.1875 
(-2.3411) 
{-2.6564} 
[1.1156] 

4.1923 
(-2.3363) 
{-2.6246} 
[0.4586] 

3.2500 
(6.6046) 
{2.1764} 
[-1.1236] 

 3.2505 
(6.7198) 
{2.0587} 
[-0.8603] 

4  4.2758 
(-2.7538) 
{-3.2169} 
[1.7771] 

4.2806 
(-2.7500) 
{-3.1944} 
[0.6641] 

1) 3.3659 
2) (7.4614) 
3) {2.2362} 
4) [-1.7288] 

3.3664 
(7.5786) 
{2.1321} 
[-1.3992] 

**      ( )  Second solution, { }Third solution  and   [ ] Fourth solution 
 

 

Fig. 2 Variation of (0)f  with the suction parameter s when 

0.5    
 

 

Fig. 3 Variation of (0)  with the suction parameter s when 

0.5    
 

 

Fig. 4 Velocity profiles when 1    
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Fig. 5 Temperature profiles when 1    
 

 

Fig. 6 Variation of (0)f  with the suction parameter s when 1   

 

 

Fig. 7 Variation of (0)  with the suction parameter s when 1   

 

 

Fig. 8 Velocity profiles when 1   
 

 

Fig. 9 Temperature profiles when 1   
 

 

Fig. 10 Variation of (0)f  with mixed convection parameter λ 
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Fig. 11 Variation of  0  with mixed convection parameter λ 

IV. CONCLUSION 

We have studied the problem of mixed convection 
boundary layer flow over an exponentially shrinking sheet 
with suction in the presence of magnetic field. The governing 
partial differential equations are converted into ordinary 
differential equations by similarity transformation, which is 
then solved numerically using the shooting method. Numerical 
results for the skin friction and the local Nusselt number as 
well as the velocity and temperature profiles are shown in 
tables and graphs for some values of the governing 
parameters. Four (multiple) solutions are found for this 
exponentially shrinking sheet problem. 
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