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Class of Non-Linear Abel Equations
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Abstract—Convergence of power series solutions for a class of
non-linear Abel type equations, including an equation that arises
in nonlinear cooling of semi-infinite rods, is very slow inside their
small radius of convergence. Beyond that the corresponding power
series are wildly divergent. Implementation of nonlinear sequence
transformation allow effortless evaluation of these power series on
very large intervals..

Keywords—Nonlinear transformation, Abel Volterra Equations,
Mathematica

I. INTRODUCTION

Nonlinear Volterra integral equations of the second kind
with weakly singular kernels (or the Abel type equations) have
the following general form:

x(t) = g(t) +
∫ t

0

K(t, s, x(s))
(t − s)α

ds, 0 ≤ α < 1, t ∈ [0, T0],

(1)
T0 is a fixed real number. For conditions on existence,
uniqueness, and continuity of a solution for equation (1)
see [19], [5], or [17]. Most often, it is not possible to find
the analytical solution of equation (1), and one must find
a numerical method to approximate the solution. However,
finding an effective computational technique for (1) is chal-
lenging because (normally) the analytical solution of (1) is
not differentiable at 0, see for example,[2], [5], [13], or [18].
There are essentially two different approaches to compensate
for this lack of differentiability.

One approach tries to find an analytical method to down-
grade the effect of the singularity and then find a numerical
technique. For example, when α = 0.5, Theorem 1.1 of
[13] shows that when g and K satisfy certain differentiability
criteria in their domains of definitions (see [5] page 29 for
details), then

x(t) = u(t) +
√

tv(t), (2)

where u(t) and v(t) are differentiable functions on the interval
of integration. The authors then were able to find more
accurate numerical results for (1) based on equation(2). Their
analysis could not be extended to other cases where α �= 0.5.
Theorem 2 page 89 of [18] shows that if g and K are analytic
in their domains of definitions, then x(t), can be written as

x(t) = X(t, t1−α), (3)
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where X(z1, z2) is real analytic at (0, 0). Based on equation(3)
the author offers effective numerical techniques. In [2], for
linear equations the singularity is extracted and as a result
a numerical method that works well for approximation of a
non-singular equation will produce accurate numerical approx-
imation when applied to equation(1).
The other class of approach lessens the effect of singularity
by choosing either non-polynomial instead of polynomial ap-
proximations, or graded meshes instead of the regular ones. In
[7] approximation on graded grids and in ([8], [9]) the hybird
collocation methods are used for linear equations. For non-
linear equations [6] uses graded grids, and [14] employs β-
polynomial spline collocation. In [17] the product integration
method is used to find accurate approximation for x(t). For
related works on the Fredholm integral equations see [4] pp
116-156 or [11] and references given there.
In this paper, for a particular class of Abel equations, we offer
an alternative technique which completely avoids quadratures
and solves this class of equations very accurately, in particular
for ts close to 0. This subclass of equations are:

y(t) = 1−λ

∫ t

0

yn(s)
(t − s)α

ds 0 ≤ α < 1, λ > 0, n = 1, 2, 3, . . . .

(4)
For a given set of α, λ, and n, the corresponding analytical
solution y(t) of equation (4) is unique, continuous, decreasing
in t, 0 < y(t) ≤ 1, and y(t) → 0 as t → ∞, see theorem
6.3 of [19]. In subsequent sections we first find the power
series expansion of y(t). For n = 1 this power series is
always convergent. However, for n ≥ 2 normally the power
series solution obtained for equation (4) has a small radius
of convergence. For example, if λ = 1/

√
π, α = 1/2, and

n = 4 (a case of practical importance), we will show that
r ≈ 0.0258. Moreover, the convergence of the power series
for t ∈ [0, r], is very slow. Outside the interval of convergence
the corresponding power series are wildly divergent.
The main objective of this article is to show the remarkable
effect of applying nonlinear sequence transformation to these
power series. For instance, y(t) in the above example can
be evaluated (almost instantaneously) for each t ∈ [0, 40],
(a significant improvement when compared to the interval of
(slow) convergence of only [0, .0258]). Contrary to quadrature
methods; the approximation for each y(a) is found directly and
independent of evaluations of prior values of y(t) for t < a.

II. POWER EXPANSION OF y(t)
To obtain the (Neumann) series expansion for x(t) one em-
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ploys the Picard successive approximation using the following
pair of recursive relations,

xn+1(t) = g(t) +
∫ t

0

K(t, s, xn(s))
(t − s)α

ds, with x0(t) = g(t).

(5)
For linear equations the Picard successive iterations is always
convergent (xn(t) → x(t) as n → ∞, for t ∈ [0, T0]), see
theorem 10.15 page 152 of [16] also pp 92-95 of [22]; and [15]
pp 34-35 for solved examples. The Picard method is simple to
program, and is effective if the corresponding series converges
after adding a sufficiently small number of terms.

For nonlinear equations xn(t) → x(t) as n → ∞, on a
sufficiently small interval [0, r], with r ≤ T0. For more details
see [19] , [12], or [17]. In addition, evaluation of successive
steps of Picard’s iterations in some cases is not practical (e.g.
n ≥ 4 in equation (4)). However, we are still able to obtain a
power series expansion for equation (4). To do this we need
the following two equations; the first equation is:∫ t

0

sγ

(t − s)α
ds = tγ+1−αB(γ + 1, 1 − α), (6)

where γ > −1, α < 1, and B is the Beta function. Equation
(6) can be established using the definition of beta function and
the change of variable s = tu. The second equation we need
is:

(x1 + x2 + . . . + xm)n =
∑ n!

n1!n2! . . . nm!
xn1

1 xn2
2 . . . xnm

m

=
∑
|δ|=n

(
n
δ

)
xδ, (7)

where n1 + n2 + . . . + nm = n, δ = (n1, n2, . . . , nm), and
xδ = xn1

1 xn2
2 . . . xnm

m . This is the ”multinomial theorem” see
for example [3] page 823.

For each given n = n0, one can show by direct substitution,
that the kth iteration of the Picard method for equation (4) is

given by yk(t) =
Nk∑
i=0

ait
i(1−α), Nk ≥ k, with y0(t) = 1

Example 2.1: For n = 2 and y0(t) = 1 we have y1(t) =
1 − λ

∫ t

0
1

(t−s)α ds = 1 − λ
1−α t1−α. Similarly, y2(t) = 1 −

λ

∫ t

0

(1 − λ s1−α

1−α )2

(t − s)α
ds, which implies y2(t) = 1 − λ

1−α t1−α

+2λ2B(2−α,1−α)
1−α t2−2α − λ3B(3−α,1−α)

(1−α)2 t3−3α, etc.
The convergence theory of Picard’s iterations guarantees the

existence of a positive r such that yk(t) → y(t) uniformly as
k → ∞, for t ∈ [0, r], see [19]. Therefore,

y(t) =
∞∑

i=0

ait
i(i−α), for t ∈ [0, r]. (8)

Remark 2.2: It has been shown in the literature that the
power series solution of the (general) equation (1) for the
most practical case; α = 1/2, under proper conditions on K

and g can be represented by x(t) =
∞∑

i=0

bit
i/2; see[13].

Theorem 2.3: The coefficients ams, m = 1, 2, . . . in equa-
tion (8) are given by:

am = −λ
∑

n!
n0!n1!...nm−1

an0
0 an1

1 . . . a
nm−1
nm−1

B((n1 + 2n2 + . . . + (m − 1)nm−1)(1 − α) + 1, 1 − α),
(9)

together with the following pair of constrains:{
n0 + n1 + . . . + nm−1 = n
n1 + 2n2 + 3n3 . . . + (m − 1)nm−1 = m − 1 (10)

Proof: This proof is by induction. To find ais the coef-

ficients in equation (8) we substitute y(t) by
∞∑

i=0

ait
i(i−α) on

both sides of (4) and obtain
∞∑

i=0

ait
i(1−α) = 1 − λ

∫ t

0

(
∑∞

i=0 ais
i(1−α))n

(t − s)α
ds. (11)

We will find a0, a1, a2 . . . , one-by-one, by matching the same
powers of t from both sides of equation (11). We do this by
ignoring all terms of higher order in t from both sides of
equation (11). To find a0 on left, we note that 1 is the only
constant on the right and therefore,

a0 = 1.

To find a1, on the left of equation (11) we have 1 + a1t
1−α+

terms of higher in t. On the right we need to replace the infinite
sum in the integrand by 1 to produce t1−α. Therefore, we have
1+a1t

1−α = 1−λ
∫ t

0
1/(t− s)αds = 1−λ(t(1−α)/(1−α)).

Equating powers of t1−α from both sides, we have:

a1 = −λ/(1 − α).

To find a2 the coefficient of t2(1−α) we replace y(s) by a0 +
a1s

1−α on the right hand side of equation (11) . We obtain

1 − λ
1−α t1−α + a2t

2(1−α) = 1 − λ
∫ t

0

(a0 + a1s
1−α)n

(t − s)α
=

1 − λ
∫ t

0

∑
n!

n0!n1! a
n0
0 a

n1
1 sn1(1−α)

(t−s)α , with n = n1 + n0, recall
equation (7). After integration (recall equation (6)) we have
1 − λ

1−α t1−α + a2t
2(1−α) = 1−

λ
∑

n!
n0!n1!

an0
0 an1

1 t(n1+1)(1−α)B(n1(1−α)+1, 1−α). To find
a2 on the left we must have n1 = 1 and n0 = n − 1 on the
right. Equating equal powers of t2(1−α) from both sides we
obtain:

a2 = −nλan−1
0 a1B((1−α)+1, 1−α) = nλ2B(2−α, 1−α)/(1−α).

In general, suppose a1, a2, . . . , am−1 are found; to find am

we set

a0 + a1t
1−α + . . . + amtm(1−α) = 1 − λ∫ t

0

∑
n!

n0!n1!...nm−1
a

n0
0 a

n1
1 ...a

nm−1
nm−1s(n1+2n2+...+(m−1)nm−1)(1−α)

(t−s)α ds

= 1 − λ
∑

n!
n0!n1!...nm−1

an0
0 an1

1 . . . a
nm−1
nm−1

t(1+n1+2n2+...+(m−1)nm−1)(1−α)

B((n1 + 2n2 + . . . + (m − 1)nm−1)(1 − α) + 1, 1 − α),
(12)

with n0 + n1 + . . . + nm−1 = n, and n1 + 2n2 + 3n3 . . . +
(m− 1)nm−1 = m− 1. Equating the same power of tm(1−α)
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from both sides, implies

am = −λ
∑

n!
n0!n1!...nm−1

an0
0 an1

1 . . . a
nm−1
nm−1

B((n1 + 2n2 + . . . + (m − 1)nm−1)(1 − α) + 1, 1 − α),
(13)

One can find each ai only in terms of λ, α and n given in
equation (4). For example; we have;

a3 = −λ

(
nan−1

0 a2 +
n(n − 1)

2!
an−2
0 a2

1

)
B(2(1−α) + 1, 1−α). Substituting for a0, a1, and a2 found
in Theorem2.3 , we obtain a3 as:

a3 =
nλ3B(3−2α,1−α)(1−n+2n(−1+α)B(2−α,1−α))

2(−1+α)2
(14)

Other coefficients a4, a5, . . . can be found similarly.
Fortunately, it is possible to find ams (given by equation (9)

under conditions (10)) easily for a given n = N0 using the
subsequent simple Mathematica program .

Mathematica Program:

a0 = 1; a1 =
λ

1 − α
;

am =
[

Assuming, m > 1,

λ · Coefficient

⎡
⎣
(

m−1∑
i=0

ai · ti(1−α)

)N0

, t(m−1)(1−α)

⎤
⎦ ·

Beta[(m − 1)(1 − α) + 1, 1 − α]
]
.

III. LINEAR EQUATIONS

For the linear case, n = 1 in equation (4), one can easily
verify that ais are given recursively by{

ai = ai−1B(i − (i − 1)α, 1 − α), for i = 1, 2, 3, . . .
with a0 = 1

(15)
Therefore, the solution of

z(t) = 1 − λ

∫ t

0

z(s)
(t − s)α

ds, 0 ≤ α < 1, (16)

is given by:

z(t) =
∞∑

i=0

(−λ)iait
i−iα, (17)

where ais are given by (15). We note that B(n−(n−1)α, 1−
α) → 0 as n → ∞ and therefore, the radius of convergence for

this series is ρ = lim
n→∞

1
λB(n − (n − 1)α, 1 − α)

= ∞. The

solution of the general linear equation

u(t) = h(t) − λ

∫ t

0

u(s)
(t − s)α

ds, 0 ≤ α < 1, (18)

then is given by:

u(t) = h(0)z(t) +
∫ t

0

z(s)h′(t − s)ds, (19)

see [12], page 39, Theorem 2.4.3.

Remark 3.1: For the particular case y(t) = 1 − ∫ t

0

y(s)ds√
t − s

,

the exact solution y(t) can also be given as, y(t) =
eπtercf

√
πt, see [19] page 23. This solution is consistent with

the solution given by equation (17).

IV. NONLINEAR EQUATIONS: AN APPLICATION

To illustrate the difficulties with nonlinear equations we
study

y(t) = 1 − 1√
π

∫ t

0

y4(s)√
t − s

ds. (20)

This equation arises in nonlinear cooling of a semi-infinite rod.
O’Conner [21] studied the analytical, physical, and numerical
aspects of this equation. To find the power series expansion
for y(t) rewrite y(t) the exact solution of (20), for t ∈ [0, r]
for a sufficiently small r > 0, as

y(t) =
∞∑

i=0

ait
i/2. (21)

We then substitute (21) in both sides of (20) to obtain
∞∑

i=0

ait
i/2 = 1 − 1√

π

∫ t

0

(
∞∑

i=0

ais
i/2)4/

√
t − s ds. (22)

We are able now to find ai’s successively by matching the
same powers of t on both sides of (22). Equations (9) and
(10) with α = 1

2 , λ = −1√
π
, and n = 4 will produce a0 = 1,

a1 = − 2√
π

, a2 = 4, a3 = − 32
3
√

π
(2 + 3

π ), a4 = 4(17 +
15
π

)

, a5 = − 256
15

√
π

(
23 +

59
π

+
49
π2

)
, a6 =

2
3
(2161 +

3823
π

+

2288
π2

), a7 = − 256
5
√

π

(
3481
21

+
61819
105π

+
30104
35π2

+
2432
5π3

)
,

and a8 =
803497

24
+

3557417
40π

+
499167

5π2
+

224672
5π3

. . . etc. Our
Mathematica program provides the same values numerically;
the first few ai’s are:
1,−1.12838, 4,−17.7828, 87.0986,−450.1, 2406.48,−13172.3
, 73352.5, 413881., 2.3596 ∗ 106,−1.35657 ∗ 107, 7.85335 ∗
107,−4.57291∗108, 2.67596∗109,−1.57261∗1010, 9.27631∗
1010,−5.48969∗1011. Therefore, the infinite sum in equation
(21) is an alternating series with rapidly growing coefficients.
The convergence of this series is extremely slow inside its
radius of convergence. To find this radius; let the partial sums
sn(t) be defined by

sn(t) :=
n∑

i=0

ait
i/2, (23)

then we computationally find that |an+1/an| → 56/9 as
n → ∞. That is, |sn+1(t) − sn(t)| = |an+1|t(n+1)/2 <
(56/9)nt(n+1)/2. Therefore, y(t) in equation (21) is conver-
gent for 0 ≤ t ≤ (9/56)2 ≈ 0.025829. However, sn(0.01)
converges to 0.915147 for n ≥ 20, and sn(0.02) converges to
0.890395 for n ≥ 75, and more than 200 terms are necessary
to approximate sn(.0258) with only 3-digits of accuracy.
The remarkable effect of applying the nonlinear sequence
transformations to sn(t) is discussed in the next section.
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Remark 4.1: The partial sum sn given by (23)are the partial
sums of the power series expansion of y(t). These sums are
different from yn(t), the nth Picard iterations for y(t), and
are comparable to truncated Taylor’s series expansion for a
function. The first n-terms of sn and yn are equal, but yn

normally has (many) more terms,(see y2(t) in example (2.1)).

V. NONLINEAR TRANSFORMATIONS

Aitken’s Δ2-process is one of the oldest of non-
linear sequence transformation, see [20] page 212. If
sn(t), sn+1(t), sn+2(t) are three successive partial sums, then
an improved estimate (see [23] theorem 5.10.4 page 313) is

gn,1(t) = sn(t) − (sn+1(t) − sn(t))2

sn+2(t) − 2sn+1(t) + sn(t)
,

n = 1, 2, 3, . . .
(24)

We can apply (24) to gn,1 and find gn,2 and so on. In general
once gn,1(t) is given by (24) then

gn,i+1(t) = gn,i(t) − (gn+1,i(t) − gn,i(t))2

gn+2,i(t) − 2gn+1,i(t) + gn,i(t)
,

n = 1, 2, . . . , i = 1, 2, . . .
(25)

If gn,i(t) converges to its limit with order p, then gn,i+1(t)
converges to the same limit with order 2p − 1. If p = 1 then
the rate of convergence for gn,i+1(t) is 2. For a proof see [23]
page 315.

Other convergence properties of Aitken’s Δ2-process are
discussed in the literature, see for example, [20],[23], [10],
and [24]. We obtained our most accurate approximations for
diagonal elements, gk,k(t), of Δ2-process. In what follows
(Levin transformation) sn is a partial sum of the form

sn =
n∑

k=0

ak.

This is for simplicity in notation. For calculation of power
series one need to make the necessary changes.

The Levin transformation is probably the best single se-
quence acceleration method currently known, see [20]. It is
designed to be exact for model sequence of the form

sn = s + ωn

∞∑
j=0

cj/(n + β)j , k, n ∈ N0, (26)

see [24],page 39.
With β + n �= 0, and β > 0. The remainder ωn are

essentially arbitrary functions of n, see equation (30) below.
The general Levin transformation can be represented by:

L(n)
k (β, sn, ωn) =

∑k
j=0(−1)k ( kj) (β+n+j)k−1

(β+n+k)k−1
sn+j

ωn+j∑k
j=0(−1)k ( kj) (β+n+j)k−1

(β+n+k)k−1
1

ωn+j

,

(27)
with k, n ∈ N0.

For derivation of equation (27) see [24] pp 39 − 40, or
consult the web notes for the Numerical Recipes Software
2007.

The numerator and denominator in (27) are not computed
as written. The following recursive scheme allows convenient
computation with different starting values:

Dn
k+1(β) = Dn+1

k (β)− (β + n)(β + n + k)k−1

(β + n + k + 1)k
Dn

k (β) (28)

The starting values are

Dn
0 =

{
sn/ωn numerator
1/ωn denominator (29)

In the literature, there are normally 4 different choices for
ωn:

ωn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(β + n)an, u transformation
an, t transformation
an+1, modified t transformation

anan+1

an − an+1
, v transformation,

(30)
see [20] pp 214 − 215.

In applying the Levin method we obtained our best results
using the t-transform. That is, in equation (28) and (29)
we substitute sn by sn(t) given by equation (23) and the
remainder term ωn by antn/2.

TABLE I The following table compares the values obtained
for y(t) given by (20), approximated by the partial sums sk =∑k

i=0 ait
i/2, gk,k given by (25) and L(2)

k (.5, s2, ω2) given by
(27)

t sk gk,k L(2)
k (.5, s2, ω2)

0.01 0.915147, k = 20 0.915147, k = 3 0.915147, k = 3

.1 Divergent 0.816887, k = 5 0.816887, k = 5

1 Divergent .686571, k = 6 .686571, k = 6

10 Divergent .553207, k = 8 .553207, k = 8

20 Divergent .515551, k = 9 .515551, k = 9

VI. CONCLUSION

To approximate y(t) the solution of y(t) = 1 −
λ
∫ t

0
yn(s)
(t−s)α ds; the simple Mathematica program provided in

section II can be used to evaluate the coefficients ais in the
sum sn =

∑n
i=0 ait

i/2. Then either the Aitken or the Levin
nonlinear transformation can be implemented to evaluate sn.
As discussed in introduction y′(0) is undefined and normally
quadrature methods do not provide very accurate approxima-
tions for y(t) when t is close to 0. The method introduced
in this paper provides exceptionally accurate answers for
those ts. TABLE I shows that our method provides accurate
approximation also for larger values of t.

40 Divergent .479554, k = 10 .479559, k = 10
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