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Abstract—With the rapid advanced of technology, the industrial 

processes become increasingly demanding, from the point of view, 
power quality and controllability. The advent of multi levels 
inverters responds partially to these requirements. But actually, the 
new generation of multi-cells inverters permits to reach more 
performances, since, it offers more voltage levels. The disadvantage 
in the increase of voltage levels by the number of cells in cascades is 
on account of series igbts synchronisation loss, from where, a 
limitation of cells in cascade to 4. Regarding to these constraints, a 
new topology is proposed in this paper, which increases the voltage 
levels of the three-cell inverter from 4 to 8; with the same number of 
igbts, and using less stored energy in the flaying capacitors. The 
details of operation and modelling of this new inverter structure are 
also presented, then tested thanks to a three phase induction motor.  
 

Keywords—Flaying capacitors, Multi-cells inverter, pwm, 
switchers, modelling.  

I. INTRODUCTION 
HE important development which touched the technology 
of semiconductors [1] opens new research orientations, 

particularly in the energy conversion techniques. Like first 
step of development, one can cites the integration of inverters 
with multi levels NPC structures in electrical power systems 
[2].The field of application of these inverters is very varied: 
control of electrical energy conversion in the industry [3], 
transmission power system stability (FACTS) [4, 5], and 
improvement of power quality in the networks by active filters 
[6], renewable energies interfaces [7-10], etc…Also they are 
an interesting alternative for medium and high power drives 
[11], because the control of this type of motors by the 
traditional techniques is on the one hand very delicate, and on 
the other hand, generates disturbances in the neighbouring 
network of which they are connected. One of the strong points 
of multi levels structure is its soft adjustment [3]. The new 
inverters generation is actually the multi-cells ones. The 
invention of this type of inverter is likely to discredit the 
traditional multi-level inverter, because, they offer a better 
performance with more flexibility, low cost and commutations 
[12].Several researchers studied these new structures, from the  
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point of view: topological [13], comparative with the other 
existing structures [14], techniques of controls [12], insertion 
in the power grid [12], etc… 

II.   MULTI-CELLS STRUCTURE 
The multi-cell inverter is designed by the connection of 

cells in cascade Fig. 1, separated by capacities operating in 
series [15]. The alternating voltage which feeds load is 
obtained via an artificial neutral (N), taken at the medium 
point of the DC source (E)   The operation of this inverter can 
be grouped on the Table I, in which one presents all the 
possible sequences of commutations offered by switchers SW. 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 Three cells inverter Structure 
 

TABLE I 
INVERTER OPERATION 

 SW1 SW2 SW3 VPG VPN 
V1 up up up E E/2 
V2 up up down E-VC1 E/2-VC1 
V3 up down up E-VC2 +VC1  E/2-VC2 

+VC1 
V4 up down down E-VC2  E/2-VC2 
V5 down up up VC2  VC2-E/2 
V6 down up down VC2 -VC1 VC2 -VC1-

E/2 
V7 down down up VC1 VC1-E/2 
V8 down down down 0  -E/2 

 
The function of switchers is to allow the passage through 

all possible voltage levels Vk; K∈ [1 ÷ 8]. Against, the diodes 
are used to make a stress distribution at the flaying capacitors, 
during the micro phases of switchers break time, thus 
allowing, maintaining their voltages around a fixed value. 
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Fig. 2 Flaying capacitors distribution voltages 
 

As the diodes are identical, they present then, the same 
voltage drops, so, this results to 
write: 6 6D DE U U E= Δ ⇒ Δ = . The diode voltage drop 
( DUΔ ) will imposes at the flaying capacitors the voltages 

1 3CV E=  (see circuit 2, P, 2 '), 2& 2 3CV E=  (see circuit 
1, 2, P, 2 ', 1 ') Fig. 2. Thus, in accordance with these two 
values of VC1 and VC2, one notices that this inverter offers 4 
level voltages [ ]2 6 6 2PNV E E E E= − − ; Table I.  

With an aim of generalization, and so that this study will 
not be limited to an inverter with 3 cells, a relation which 
gives the terminal flaying capacitors voltage for an inverter 
with n cells is defined Fig. 3. 
   
 
 
 
 
 
 
 
 
 

Fig. 3 Multi-cells structure 
 

The voltage of each diode /DU E nΔ = , so one can define 
the terminal voltages of flaying capacitors 

( ) ( 2 ). /C n KV n k E n− = −  
Let us study more in detail the inverter with 3 cells. The 

voltage VPG is the sum of each cell voltage (1). They even 
depend on the conductions state of switchers’ (Fig. 1). 

Phase to ground voltage 
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Since the switchers of the same cell must be 
complementary, in order to avoid the open circuits or the 
parallel connection of two various values of voltages. Then, if 
one of the switchers is at the state on, the other one must be at 
the state off. Thus in number language, it is proposed, for the 
switcher up upSW  “1” and for the switcher down downSW  “- 1” 
Table II. This made, and in accordance with the system (2) we 
define the switching functions for each cell. 
 

3 3(1 ). 2CellV SW E= +  

2 2 3( ). 3CellV SW SW E= −  

1 1 2( ). 6CellV SW SW E= −  
/ 2PN PGV V E= −  

After replacement of these last expressions in the relation 
(1), one finds: 3 2 1(3 ). 6PGV SW SW SW E= + + +  
 

The fact of having the same voltage for various sequences 
of commutations can be used in the loop of control, like 
additional degree of freedom for the voltage maintaining of 
each capacitors to its fixed value [15]. In order to pass through 
all the sequences (Table II) same authors propose 3 carriers 
shifted to 1/3 of period each [16] (Fig. 4). The control 
technique presented is the pulse wide modulation PWM, with 
triangular carriers. 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Three carriers and the corresponding output voltage 
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Fig. 5 Simulation model 
 

20
40

60
80

100

25
35

45
55

0

0.5

1

1.5

2

2.5

Harmonic Rangflaying Capacitors   µF

H
ar

m
on

ic
s 

C
om

po
ne

ne
ts

  %

 
(a) 

20
40

60
80

100

25
35

45
55

0

0.5

1

1.5

Harmonic RangFlaying Capators  µF

H
ar

m
on

ic
s 

C
om

po
ne

nt
s 

  %

 
(b) 

Fig. 6 Harmonics Spectrum 
(a) Voltage 
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TABLE II 
FLAYING CAPACITORS EFFECT 

C   µF 20 25 30 35 40 45 50 55 60 
THDV  % 4.3649 3.5388 3.0069 1.2744 2.3764 1.9133 1.8207 1.7461 1.6839 

VOutPut    145.23 145.34 145.41 145.66 145.48 145.54 145.55 145.56 145.57 
THDI   % 1.8968 1.5995 1.4195 0.9759 1.2241 1.0967 1.0733 1.0564 1.0419 

IL 14.52 14.53 14.54 14.56 14.54 14.55 14.556 14.55 14.55 
 

III. SIMULATION AND RESULTS 
The single phase multi-cell inverter is modelled then 

simulated for a fixed RL load “R=10Ω & L=1.5mH” with 
different Flaying Capacitors values. 

Varying the capacitor on can notice a clear improvement of 
the output variables and the power quality delivered by the 
inverter. This says the optimization of the capacitors sizes 
used make it possible to reach the best performances of the 
multi-cellular inverter: 

- A great stability of intermediate voltages VC1 and  
VC2. 

- The THDV  and  THDI are on their low level 
respectively 1.2744% and 0.9759% . 

- All the energy of the DC bus is transferred towards 
the alternate consumer as a fundamental frequency with a 
minimum  energy waste,  evaluated to 2.93%. 
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Fig. 7 Effect of capacitors sizes on the distributed voltages 

IV. CONCLUSION 
The wished inverter output voltage defined by the reference 

is an average value between successive levels commutations, 
in an interval time fixed by carrier period. This voltage sample 
influences the sinusoid current thickness, because the 
commutation from one level to another imposes important 
electromagnetic energies exchange stored in the reactive 
elements. This unwanted exchange can be attenuated by the 
optimal choice of the Flaying Capacitors values.  
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