Effect of Dietary Chromium Yeast on Thigh Meat Quality of Broiler Chicks in Heat Stress Condition

Majid Toghyani1*, Abbas Ali Gheisari2, Ali Khodami3, Mehdi Toghyani1, Mohammad Mohammadrezaei1 and Ramin Bahadoran1

Abstract—This experiment was conducted to investigate the effect of different levels of dietary chromium yeast (Cr-yeast) on thigh meat quality of broiler chicks reared under heat stress condition. Two hundred and forty Ross male chickens in heat stress condition (33±3°C) were allocated to five treatments in a completely randomized design. Treatments were supplemented with 0 (control), 200, 400, 800 and 1200 µg kg-1 Cr in the form of Cr yeast. Twelve chicks from each treatment were slaughtered at 42 d, to evaluate moisture, protein, lipid, pH and lipid oxidation of thigh meat. Protein, moisture, lipid and pH of thigh meat were not affected by supplemental Cr. Thigh meat lipid tended to decrease in broilers received 1200 µg kg-1 Cr. Storage time increased lipid oxidation of meat (P<0.01). Lipid oxidation of thigh muscle for two days of storage were affected by supplemental Cr and decreased (P<0.05). Results of this study showed that dietary Cr-yeast supplementation improved the thigh meat quality of broiler chicks in heat stress condition.

Keywords—Broiler, Heat stress, Chromium yeast, Thigh meat quality.

I. INTRODUCTION

Heat stress has long been recognized as having a detrimental effect on broiler production efficiency and meat yield [1,2]. Exposure to high ambient temperatures has been reported to cause undesirable changes in meat characteristics in broilers [3,4,5]. Trivalent Cr is an essential element in the animal body [6] and is involved in carbohydrate, lipid, protein and nucleic acid metabolic functions [7]. Cr is also a cofactor of insulin, promoting insulin activity [8] and enhancing amino acid uptake into muscular cells for protein synthesis [9]. Stress increased urinary excretion of Cr and may exacerbate a marginal Cr deficiency [10,11]. Dietary Cr supplementation has been reported to have a positive effect on meat quality [12,13] and carcass traits of broiler chicks in natural [14,15] or heat stress condition [16].

The aim of this study was to investigate the effects of different levels of Cr-yeast on the thigh meat quality of broiler chicks in heat stress condition.

II. MATERIALS AND METHOD

Two hundred and forty one-day-old commercial Ross male chicks were reared under heat stress condition. During the experiment, the mean value of daily temperature in the house was kept 33±3°C. Birds were randomly allotted by body weight to one of five treatments (four replicate pens of twelve chicks per pen) in a completely randomized design. Broiler chicks were housed in floor pens. Chicks were maintained on a 23 h light and 1 h dark schedule and allowed ad libitum access to experimental diets and water. The dietary treatments consisted of the basal diet supplemented with 0 (control), 200, 400, 800 and 1200 µg kg-1 Cr of diet in the form of Cr yeast (contain 1000 mg/kg Cr). The birds were fed a corn-soybean meal starter diets until 21 d of age followed by a finishing diet from 21 to 42 day. Ingredients and chemical composition of the starter and finishing basal diets are shown in Table 1. The basal diets were formulated to meet or exceed the nutrient requirements of broilers by the National Research Council [17]. Cr contents were 3.45 and 3.96 mg kg-1 in starting and finishing basal diets, respectively, as measured by atomic absorption spectrometer with a graphite furnace (Perkin-Elmer, AAnalyst 600, USA).

On day 42 of the trial, three broiler chicks from each pen were selected according to average body weight within the pen following a 12-h fasting, were weighed individually, killed and eviscerated (abdominal fat pad, liver, intestines, proventriculus, gall bladder, spleen, oesophagus and full crop). Some thigh muscles were immediately stored at −20°C for assessing crude fat and crude protein, and others were stored individually in plastic bags at 4°C in refrigerator for 2 and 6 days for analysis of meat lipid oxidation.

In order to determine the moisture content, the sample (5 g) was dried at 105°C for 24 h [18]. Intramuscular fat content was determined according to the AOAC (1990) (Soxhlet procedure). The sample was dehydrated (2 g) and subjected for 75 min to a 40–60°C petroleum ether circuit at 80°C [18]. The crude protein was determined following the Kjeldahl method. At 12 h after slaughter the thigh muscle pH was measured with a Knick digital pH meter (Bodily Corp., Santa
Ana, CA, USA) after homogenization of 1 g of raw muscles for 30 s in 10 ml of 5 M iodoacetate [19].

Lipid oxidation was monitored by measuring Thiobarbituric Acid Reactive Substances (TBARS) using the method described by Strange et al [20].

Data were analyzed by analysis of variance procedures appropriate for a completely randomized design using the GLM procedures of SAS [21]. Significant differences (P<0.05) among treatment means were determined using Duncan's new multiple range test.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>COMPOSITION OF THE BASAL DIETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients (%)</td>
<td>Starter</td>
</tr>
<tr>
<td>Corn</td>
<td>51.88</td>
</tr>
<tr>
<td>Soybean meal, CP 44%</td>
<td>39.8</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>4.47</td>
</tr>
<tr>
<td>Dicalcium phosphate</td>
<td>1.56</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>2.22</td>
</tr>
<tr>
<td>Salt</td>
<td>0.4</td>
</tr>
<tr>
<td>Vitamin premix 1</td>
<td>0.25</td>
</tr>
<tr>
<td>Mineral premix 2</td>
<td>0.25</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.17</td>
</tr>
<tr>
<td>Calculated composition</td>
<td></td>
</tr>
<tr>
<td>Metabolizable energy (Kcal/Kg)</td>
<td>3050</td>
</tr>
<tr>
<td>Crude protein (%)</td>
<td>21.92</td>
</tr>
<tr>
<td>Calcium (%)</td>
<td>0.953</td>
</tr>
<tr>
<td>Available phosphorus (%)</td>
<td>0.429</td>
</tr>
<tr>
<td>Methionine + Cysteine (%)</td>
<td>0.858</td>
</tr>
<tr>
<td>Lysine (%)</td>
<td>1.205</td>
</tr>
<tr>
<td>Chromium analyzed (ppm)</td>
<td>3.45</td>
</tr>
</tbody>
</table>

1: Vitamin premix contains followings in 2.5 kg: vitamin A, 9000000 IU; vitamin D3, 2000000 IU; vitamin E, 18g; vitamin k3, 2g; thiamine 1.8 g; riboflavin, 6.6 g; panthothenic acid, 10 g; vitamin B6, 3 g; vitamin B12, 15 mg; niacin, 30 g; biotin, 100 mg; folic acid, 1g; choline chloride, 250 g; Antioxidant 100 g.

2: Mineral premix contains followings in 2.5 kg: manganese, 100 g; zinc, 100 g; iron, 50 g; copper, 10 g; Iodine 1g; selenium 200 mg.

III. RESULTS AND DISCUSSION

Effects of Cr supplementation on moisture, intramuscular fat and protein of thigh meat are summarized in Table 2. Dietary Cr had no effect on moisture and intramuscular fat content (P>0.05). However, fat content tended to decrease at level of 1200 µg Cr kg⁻¹. Protein content of thigh muscle was also higher but not significantly (P>0.05) in Cr supplemented groups compared with birds receiving no Cr supplementation. These results were similar to observation of Moore and Cromwell [22] when pigs were fed by Cr picolinate or Cr chloride, tissue fat and moisture were not affected. However, Kim et al [23] reported in broiler chicks, supplementing the Cr picolinate in the diets decreased fat content of the carcass. The Cr has been found to exert inhibitory effects on in vitro lipogenic activity in chick and pig adipose tissue [23,24]. However Lambert and Jacquin [25] reported insulin inhibits gluconeogenesis and depresses adipocyte lipolysis by reducing the activities of adenylate cyclase and hormone-sensitive lipase.

In the present study Supplemental Cr tended to increased muscle protein. Amayta et al. [12] observed an increase of the protein level in muscles of broilers fed a diet supplemented with Cr in the form of Cr chloride or Cr yeast. Samanta et al. [13] reported meat protein accretion improved in broiler fed organic Cr under heat stress condition. Also increasing in protein levels in the carcass and liver of broilers given Cr picolinate were observed [14,23]. Cr has been shown to potentiate insulin action by enhancing its binding to the target cell receptors and also by improving its post receptor signaling. Insulin is known as primary hormone regulating glucose cellular absorption and utilisation. In chickens, insulin is also known to increase the protein synthesis, efficiency of amino acid transport and diminished protein degradation rate [26,27]. The mechanism of insulin action on protein metabolism is not clarified yet, but it was shown by Bigot et al.[28] that S6K1 in chickens, known as potent regulator of protein synthesis in mammals, is activated by insulin. The present investigation revealed that the effects of organic Cr is more than inorganic on meat quality. It has been reported in swine that supplementation of organic Cr utilized more efficiently than inorganic Cr sources [22,29].

Thigh muscle pH was not significantly influenced by the supplemental Cr (Table 2). In agreement with our results, increasing in muscle pH was reported in broilers [12] and pigs [30] fed Cr. However, Matthews et al.[31] observed the pH of loin muscle 24 h after slaughter was not affected by Cr in pig. Stress before slaughter can lead to increased muscle glycogen breakdown and glycolysis after slaughter, and then the increased muscle lactic acid lowers the pH of meat. The mechanism of dietary Cr to influence pH of the muscle after slaughter could be explained by the roles of Cr to reduction the stress-induced catecholamine secretion [13,16] and then inhibited glycogen breakdown and glycolysis.

The effects of supplemental Cr on lipid oxidation of thigh muscle are presented in Table 3. The results of oxidative stability of thigh meat stored under refrigerated conditions show that oxidation occurred slowly and followed a linear increase in oxidation with length of storage. The thigh meat of birds fed the Cr showed a reduction (P<0.05) of TBARS values after four days of storage, especially in Cr at level of 1200 µg kg⁻¹. Oxidation of lipids is a major cause of deterioration in the quality of meat and can directly affect many meat characteristics such as flavor, color, texture, nutritive value and safety of the meat [32]. The balance between antioxidants and prooxidants and the composition of skeletal muscle influences the susceptibility of muscle lipids to oxidation [33]. In the present study, lipid oxidation was affected by supplemental Cr (Table 3). It is well known that Cr plays an important role as integral component of the glucose tolerance factor (GTF), which potentiate the action of insulin, and regulate fat metabolism [34]. It has been well recognized that insulin metabolism influences lipid peroxidation [35]. Cr is insulin cofactor, therefore postulated to function as an antioxidant [36]. According to antioxidant theory [37] when the concentrations of antioxidant vitamins (vitamin C and E)
EFFECTS OF DIETARY CR-YEAST ON MOISTURE, PROTEIN, LIPID AND PH OF CHICKEN THIGH MEAT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cr-yeast (µg kg⁻¹)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>Control 200 400 800 1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73.2 73.1 72.9 74.4</td>
<td>73.6 NS</td>
</tr>
<tr>
<td></td>
<td>17.27 18.56 18.83 18.05</td>
<td>18.68 NS</td>
</tr>
<tr>
<td></td>
<td>5.96 5.64 6.17 6.83</td>
<td>4.91 NS</td>
</tr>
<tr>
<td>pH</td>
<td>6.17 6.06 6.28 6.21</td>
<td>6.19 NS</td>
</tr>
</tbody>
</table>

NS: Not Significance (P>0.05)

EFFECTS OF DIETARY CR-YEAST ON THE LIPID OXIDATION OF CHICKEN THIGH MEAT (mg MALONALDEHYDE/KG MEAT) FOLLOWING DIFFERENT REFRIGERATED STORAGE

<table>
<thead>
<tr>
<th>Lipid oxidation</th>
<th>Cr-yeast (µg kg⁻¹)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control 200 400 800 1200</td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td>0.935 0.673 0.642 0.593</td>
<td>0.725 *</td>
</tr>
<tr>
<td>Day 6</td>
<td>1.418 1.341 1.442 1.487</td>
<td>1.160 *</td>
</tr>
</tbody>
</table>

*: P<0.05

decrease, lipid peroxidation increases in the plasma and tissues, leading to damage of cell membranes. Sahin et al.[38] reported supplemental Cr resulted in an increase in serum concentrations of vitamin C and E and decrease in malonaldehyde concentration in serum of heat-stressed broiler chicks. Preuss et al.[36] reported decreased hepatic TBARS concentrations of vitamin C and E and decrease in decrease, lipid peroxidation increases in the plasma and tissues, leading to damage of cell membranes. Sahin et al.[38] reported supplemental Cr resulted in an increase in serum concentrations of vitamin C and E and decrease in malonaldehyde concentration in serum of heat-stressed broiler chicks. Preuss et al.[36] reported decreased hepatic TBARS concentration upon supplementation of Cr picolinate and nicotinate in rats. Similarly, Anderson et al.[39] also reported the potential beneficial antioxidant effects of the individual and combined supplementation of Cr and Zn in Tunisian adult subjects with type 2 diabetes mellitus for 6 months. It seems, studies on Cr and its effect on meat oxidative are scarce. However, Sahin et al.[40] reported, when Japanese quails were fed by Cr picolinate, malondialdehyde (MDA) concentration in serum decreased.

It was concluded from the present study that, supplementing the Cr-yeast in the broiler diets, influence the thigh meat quality in term oxidative stability in broiler chicks reared under heat stress condition.

REFERENCES


