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 
Abstract—Chatter vibrations, occurring during cutting process, 

cause vibration between the cutting tool and workpiece, which 
deteriorates surface roughness and reduces tool life. The purpose of 
this study is to investigate the influence of cutting parameters and 
tool construction on surface roughness and vibration in turning of 
aluminum alloy AA2024. A new design of cutting tool is proposed, 
which is filled up with epoxy granite in order to improve damping 
capacity of the tool. Experiments were performed at the lathe using 
carbide cutting insert coated with TiC and two different cutting tools 
made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to 
design of experiment and to optimize cutting conditions. By the help 
of signal-to-noise ratio and analysis of variance the optimal cutting 
condition and the effect of the cutting parameters on surface 
roughness and vibration were determined. Effectiveness of Taguchi 
method was verified by confirmation test. It was revealed that new 
cutting tool with epoxy granite has reduced vibration and surface 
roughness due to high damping properties of epoxy granite in 
toolholder. 

 
Keywords—ANOVA, damping capacity, surface roughness, 

Taguchi method, vibration. 

I. INTRODUCTION 

URNING operation is a commonly used cutting process 
for manufacturing of the parts. In turning operation, 

vibrations occur and the cutting tool results in a wave on the 
surface of the work piece, which magnifies tool vibrations. 
Because of these vibrations, the tool edge can be released from 
the work piece. This unstable tool vibration is called chatter. 
Chatter is a frequent problem in turning operation leading to 
an unstable cutting process affecting the surface quality, 
productivity, tool life, tool wear and dimensional accuracy of 
the machined work piece and it is usually accompanied by 
considerable noise [1]-[3]. The avoidance of chatter has been a 
goal for many years. The design and configuration of the 
tooling structures and the machine, tool and work piece 
materials and cutting conditions affect vibration. An 
appropriate choice of tool design and cutting conditions, and 
stiffness and damping improvement for the modes of vibration 
resulting in relative motion between tool and work piece can 
reduce vibration [4]. Cutting tool, in machining process, is the 
flexible element of the system, with the work piece being rigid 
[5]. A simple way to reduce the dynamic displacement 
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between cutting tool and work piece is enhancing the stiffness 
of cutting tool by using a passive damping element, integrated 
on the tool shaft. The principle of passive control is to convert 
vibrating energy into other forms by improving the damping 
capability of the tool [6], [7]. 

The precision of machine tools depends on the materials 
used in their structures. These materials reduce vibration 
during machining process by dissipating the vibrating energy. 
Hence, these materials must possess good material properties 
like high damping capability, stiffness, elastic modulus, and 
thermal expansion coefficient. Nowadays, composite materials 
such as epoxy granite are typically used in substitution to 
conventionally used cast irons in structural applications for 
machine tools which require higher stiffness, strength, and 
damping than can be achieved with cast irons [8]. 

Recently the optimization of cutting conditions to improve 
vibration level and surface roughness in a machining process, 
as well as the potential of composite materials for the 
development of precision machine structures were studied by 
many authors. An investigation performed by [9] indicated 
that the logarithmic decrement values of the epoxy granite 
samples are almost three times higher than those of cast iron. 
Reference [10] studied the mechanical characteristics of an 
epoxy granite beam against cast iron and steel and observed 
that for same stiffness, the epoxy granite structure offers a 
sharp reduction in mass and vibration is dampened out faster 
by epoxy granite in comparison with steel and cast iron 
structures. It was also reported that the novel design has 
increased damping ratio in ten times and improved surface 
roughness compared to conventional tool. Reference [11] 
applied a novel carbon based composite coating with multi-
layered nanostructure at the clamping area of the tool to 
suppress tool chatter. A new-type nonlinear tuned mass 
damper containing an additional element of elastic support dry 
friction is proposed by [12] to suppress machining chatter. 
Reference [13] developed an efficient position-dependent 
multi body dynamic model of a machine tool to evaluate and 
improve dynamic performance of a machine tool at the design 
stage. Reference [14] reduced the vibration level of the cutting 
tool in turning of aluminum alloy 6063 by using passive 
damping pad of viscoelastic material of neoprene. In addition, 
analysis of variance (ANOVA) showed that the tool vibration 
during machining is mainly influenced by depth of cut and 
cutting speed. A new tool design including special elements 
made of damping materials presented by [15] has reduced 
vibration amplitude and surface roughness by improving 
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damping capability of the tool. Reference [16] reported that 
tool overhang and work cross-section are the main factors that 
affect the stability of machining process. An experimental 
study carried out by [17] on the effect of the tool and 
workpiece material, tool geometry and cutting conditions on 
process stability in internal finish turning revealed the 
significant influence of the ratio of tool overhang to bar 
external diameter on the stability of the process. Reference 
[18] used the diamond as coating material in dry machining of 
aluminum alloys to improve the tool life. It was also proved 
that the combination of the optimized cutting conditions and 
tool geometry leads to achieve high surface quality. 
References [19]-[21] reported the significant influence of feed 
rate in turning of Al-7075-T6, aluminum alloy 6063 TiC 
composites and aluminum alloy 7075 using Taguchi method 
and ANOVA, respectively. Reference [22] investigated the 
effect of machining parameters in machining of the aluminum 
alloy 7050 based on Taguchi L9 technique. The cutting 
process was optimized for surface roughness and it was 
concluded that cutting speed, depth of cut and feed rate are the 
main parameters that affect surface roughness. Reference [23] 
by using design of experiment and ANOVA results stated that 
feed rate has the great impact on surface roughness in turning 
of aluminum alloy AS17. Reference [24] evaluated the effect 
of cutting parameters on surface roughness. They determined 
the optimum cutting condition in turning of aluminum alloy 
6063 using Taguchi method. It was found that feed rate is the 
dominant factor affecting surface roughness compared to 
cutting speed and depth of cut. Therefore, this discussion 
about turning operation indicates that it is a vital task to 
increase the stiffness and damping of machine tool and to 
select the optimum cutting condition to assure high surface 
quality of machined work piece. 

This paper includes an experimental study that investigates 
the effect of epoxy granite on damping capability 
improvement of cutting tool in turning of aluminum alloy 
AA2024. The new developed tool was compared to the 
conventional one. This paper also presents the application of 
L9 orthogonal array Taguchi method and analysis of variance 
for determining the optimal cutting condition and the effect of 
each cutting parameter on surface roughness and natural 
frequency. 

II. MATERIALS AND METHOD 

A. Design of Experiment 

Design of experiment is a powerful tool that is extensively 
used in industry to model and analysis the process or product 
variables that influence product quality. However, in turning 
operation, a proper implementation and selection of the cutting 
tool, and cutting condition and parameters require 
considerable knowledge and experience to design experiments 
and analysis experimental data. Additionally, conventional 
experimental design methods are difficult and complicated 
especially when the number of parameters increases [25]. 
Therefore, for optimization of cutting parameters for vibration 
and surface roughness in turning operation a more efficient 

method is required. Taguchi method is a unique and powerful 
technique for producing high quality products at subsequently 
low cost. According to the Taguchi method, the optimum 
cutting condition of input parameters is determined, while the 
variation caused by uncontrollable factors is neglected [26]. 
To study, analysis variation and predict the optimum results 
the Taguchi method uses a special design of orthogonal arrays 
and signal-to-noise ratio (S/N). Three forms of S/N ratio used 
for optimization of the process are the-larger-the-better, the-
nominal-the better and the-lower-the-better. Moreover, in 
order to determine the influence of each parameter on 
response the analysis of variance (ANOVA) is suggested by 
Taguchi. In Taguchi method, it is also recommended to 
perform confirmation run to verify the Taguchi method 
efficiency in optimizing the parameters [27]. 

In this study the optimization of cutting parameters were 
performed for natural frequency and surface roughness in 
turning of AA2024. The control parameters were spindle 
speed (s), feed rate (f), depth of cut (d) and tool overhang (l). 
Three levels were specified for each of the factors as shown in 
Table I. The orthogonal array chosen was L9. For surface 
roughness and natural frequency “The-smaller-the-better” 
principle is applied among the values expected to be reached 
at the end of the experiments. In this case, the generic form of 
S/N ratio is, 

 

ߟ   ൌ െ10 log ቀଵ
௡
∑ ௜ܻ

ଶ௡
௜ୀଵ ቁ														                 (1) 

 
where η represents the S/N ratio, n is the number of 
experiments done under experiment conditions and Yi is the 
calculated characteristics. Additionally, the 95% confidence 
level is applied in ANOVA to determine the effect of each 
factor on natural frequency and surface roughness. To perform 
the optimization of the process Minitab 16 statistical analysis 
software is used, which is extensively used in different fields 
such as mathematics, quality improvement in engineering, 
economics and sports.  

B. Experimental Setup 

Machining processes were performed under dry condition at 
the lathe machine model 16K20VF1 (Russia), which has the 
maximum spindle speed of 1600 rpm and maximum power of 
5.5 kW. The conventional cutting tool and a new proposed 
cutting tool with new design made of hardened steel AISI 
5140 were used as cutting tools (Fig. 1). As it can be seen 
from Fig. 1 (c) the holes of the cutting tool are filled up with 
epoxy granite, the physical and mechanical characteristics of 
which are provided in Table II. The Carbide rhombic cutting 
insert coated with TiC, manufactured by Sandvik Coromant, 
was used as tool insert. Aluminum alloy AA2024 having size 
of 200 mm in length with 65 mm diameter was used as 
workpiece material, the chemical composition of which is 
given in Table III. Additionally in each trial, before 
machining, the skin layers of the workpiece were removed 
using a new cutting insert coated with TiC to remove the rust 
layer and to minimize any effect of inhomogeneity of 
workpiece material on experimental results. Besides, the effect 
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TABLE V 
ANOVA FOR Ra OF ALUMINUM ALLOY AA2024 FOR CONVENTIONAL CUTTING TOOL 

Source Degree of Freedom Sum of squares Mean of squares F ratio P value   % of Total 

Spindle Speed  2 0.127482 0.0637408 20.4264 0.021 81.301 

Feed rate 2 0,007767* 0.0038834 1.2444 0.540 4.952 

Depth of Cut 2 0.016839 0.0084194 2.6981 0.791 10.710 

Overhang 2 0.004715* 0.0023574 0.7554 0.934 3.007 

Error 0 0 0    

Total 8 0.156802    100 

(error) (4) 0.012482 0.0031205    

* Indicates sum of squares added together to estimate the pooled error sum of squares shown within parenthesis.  
 

TABLE VI 
ANOVA FOR Ra OF ALUMINUM ALLOY AA2024 FOR CUTTING TOOL FILLED UP WITH EPOXY GRANITE 

Source Degree of Freedom Sum of squares Mean of squares F ratio P value   % of Total 

Spindle Speed  2 0.0031176   0.0015588 1.2545  0.446    25.00 

Feed rate 2 0.0029482*   0.0014741     1.1863   0.462     24.00 

Depth of Cut 2 0.0020222*   0.0010111 0.8137   0.562     16.50   

Overhang 2 0.0042409 0.0021204 13.8022 0.346     34.50 

Error 0 0 0    

Total 8 0.01252306    100 

(error) (4) 0.00497040      0.0012426    

* Indicates sum of squares added together to estimate the pooled error sum of squares shown within parenthesis. 
 

TABLE VII 
EXPERIMENTAL RESULTS AND S/N RATIOS FOR NATURAL FREQUENCY  

Experiment 
No. 

A B C D 
Natural frequency for conventional 

cutting tool (Hz) 
S/N ratio 

(dB) 
Natural frequency for cutting tool filled up with 

epoxy granite (Hz) 
S/N ratio 

(dB) 
1 1 1 1 1 3491.2 -70.8595 3039.6 -69.6563 

2 1 2 2 2 2771.0 -68.8527 2417.0 -67.6655 

3 1 3 3 3 2038.6 -66.1866 2050.8 -66.2385 

4 2 1 2 3 2148.4 -66.6423 1928.7 -65.7053 

5 2 2 3 1 3198.2 -70.0981 2917.5 -69.3002 

6 2 3 1 2 2868.7 -69.1537 2685.5 -68.5805 

7 3 1 3 2 2978.5 -69.4800 2392.6 -67.5774 

8 3 2 1 3 2038.6 -66.1866 1843.1 -65.3119 

9 3 3 2 1 3173.8 -70.0316 3155.5 -69.9814 

 
As seen from Fig. 11 increase in tool overhang from 41 to 

65 mm decreases the natural frequency values linearly at all 
levels of spindle speed from 800 to 1000 rpm. At 41 mm tool 
overhang due to 630 rpm spindle speed the highest natural 
frequency value was observed using conventional cutting tool, 
while the smallest value of natural frequency was obtained at 
1000 rpm spindle speed due to 65 mm tool overhang using 
cutting tool with epoxy granite in turning of AA2024. During 
the experiments it was also noticed that the smallest value of 
natural frequency was obtained at highest spindle speed (1000 
rpm) for both cutting tools (Table VII).  

Fig. 12 shows the S/N ratios graphs for natural frequency 
for both cutting tools calculated by (1). Fig. 12 indicates a 
much stronger influence of tool overhang on the natural 
frequency than the other three parameters using both cutting 
tools in turning of AA2024. Using Fig. 12 and Table VII the 
optimum combinations of cutting parameters for natural 
frequency are A3B2C2D3 and A3B2C3D3 for conventional 
cutting tool and cutting tool with epoxy granite, respectively. 
Predicted S/N ratios and natural frequency values obtained 
under optimum conditions are -65.9622 dB and 1986.59Hz, 
respectively, for conventional cutting tool and -65.1677 dB 

and 1774.13 Hz, correspondently, for cutting tool with epoxy 
granite. 

In Tables VIII and IX, the results of ANOVA are given to 
determine statically the effect of each parameter on natural 
frequency during machining of AA2024. The results of 
ANOVA analysis indicate that the most effective variable for 
natural frequency in turning of AA2024 is tool overhang with 
96.12% and 96.6% for conventional cutting tool and cutting 
tool with epoxy granite, respectively. However, the other 
variables that have effect on natural frequency is feed rate 
with 3.122% and 4.8% for conventional cutting tool and 
cutting tool with epoxy granite, respectively.  

After determining the optimum cutting condition and 
evaluating the influence of cutting condition, tool construction 
and epoxy granite on surface roughness and natural frequency 
it was observed that the surface roughness and natural 
frequency values obtained by cutting tool with epoxy granite 
are less than those of obtained by conventional cutting tool 
(Tables IV and VII). Therefore, it can be concluded that new 
cutting tool, which is filled up with epoxy granite has 
increased the damping capability of the tool compared to the 
conventional cutting tool. This can be explained by the fact 
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 The Ra is mostly influenced by spindle speed with 
81.301% for conventional cutting tool, while this variable 
is tool overhang with 34.5% followed by spindle speed, 
feed rate, depth of cut with 25%, 24% and 16.5%, 
respectively, for cutting tool with epoxy granite. 

 Tool overhang is the factor that significantly affects 
natural frequency with 96.12% and 96.6% for 

conventional cutting tool and cutting tool with epoxy 
granite, respectively. 

 The new proposed design of cutting tool has decreased the 
Ra and natural frequency values compared to conventional 
cutting tool due to its heterogeneous structure and high 
damping capability of epoxy granite.  

 
TABLE X 

COMPARISON BETWEEN EXPERIMENTAL AND PREDICTED RESULTS OF Ra 

Cutting tool Experimental results Predicted results Differences 

 Raexp, µm ηexp, dB Rapred, µm ηpred, dB Raexp- Rapred ηexp- ηpred 

Conventional cutting tool 0.765 2.327 0.748 2.52300 0.017 -0.196 

Cutting tool with epoxy granite 0.542 5.320 0.531 5.420 0.011 -0.1 

 
TABLE XI 

COMPARISON BETWEEN EXPERIMENTAL AND PREDICTED RESULTS OF NATURAL FREQUENCY 

Cutting tool Experimental results Predicted results Differences 

 fexp, Hz ηexp, dB fpred, Hz ηpred, dB fexp- fpred ηexp- ηpred 

Conventional cutting tool 2142.3 -66.617 1986.59 -65.9622 155.71 -0.6548 

Cutting tool with epoxy granite 1934.6 -66.134 1774.13 -65. 731 160. 74 -0.4030 
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