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Effect of Atmospheric Pressure on the Flow at the
Outlet of a Propellant Nozzle
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Abstract—The purpose of this work is to simulate the flow at the
exit of Vulcan 1 engine of European launcher Ariane 5. The geometry
of the propellant nozzle is already determined using the characteristics
method. The pressure in the outlet section of the nozzle is less than
atmospheric pressure on the ground, causing the existence of oblique
and normal shock waves at the exit. During the rise of the launcher,
the atmospheric pressure decreases and the shock wave disappears.
The code allows the capture of shock wave at exit of nozzle. The
numerical technique uses the Flux Vector Splitting method of Van
Leer to ensure convergence and avoid the calculation instabilities. The
Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level
are selected to ensure the numerical convergence. The nonlinear partial
derivative equations system which governs this flow is solved by an
explicit unsteady numerical scheme by the finite volume method. The
accuracy of the solution depends on the size of the mesh and also the
step of time used in the discretized equations. We have chosen in this
study the mesh that gives us a stationary solution with good accuracy.

Keywords—Launchers, supersonic flow, finite volume, nozzles,
shock wave.

I. INTRODUCTION

HE study of propellant thrusters launcher holds great

interest in ballistics. The choice of the profile of the
convergent of the nozzle is such that the thrust is high at the
outlet. The excessive length of this type of nozzles obtained by
the characteristic method (9 m) are used as a truncated nozzle,
and we take the third of the length from the throat (3 m) [1].
This nozzle is called truncated ideal contour (TIC). In an earlier
work, it is already found the truncated ideal profile of this type
of propellant nozzle [1]. It is this profile that will be used to
simulate the flow at the outlet of the nozzle opening into the
atmosphere. For this purpose, a finite volume methodology is
employed to determine the flow parameters inside and outside
of nozzle. The technology uses the numerical Flux Vector
Splitting method of Van Leer. Here, adequate time stepping
parameter, along with CFL coefficient and mesh size level are
selected to ensure numerical convergence, sought with an order
of 10°. The mesh is divided into two parts, a mesh in the nozzle
and the outer mesh of the nozzle. The volume of the atmosphere
of the mesh is selected so that one will not have the end effects.
In this work, we will test our calculation code using only the
Euler equations before taking into account the flow and
cryogenic LH, and LOX.
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II. GOVERNING EQUATIONS

We tested the profile found by the characteristics method
with our computer code by using the finite volume method [1],
[4] in order to determine the flow parameters in the nozzle
which starts by a convergent followed by an arc of circle to the
throat. The convergent is connected to the divergent profile
found by the characteristics method. The grid used is
represented on Fig. 1.
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Fig. 1 Computational grid

The profile of the proposed divergent is given by [1]:

thh=y1 + A;.exp [—@] (D)
0.943 < Rim <228; Ry =0.13m )

with:
y, =8.77; Ay = =7.90; x, =0; t; = 17.158 (3)

The results are function of grid size, number of iterations and
the CFL [2]. The profile is tested and gave the same result with
the method of characteristics [1] (Fig. 2).

Mach number contours

Fig. 2 Mach number contours in the nozzle

We added to the propellant nozzle part of the downstream
atmosphere to simulate the flow in function of the variation of
the atmospheric pressure. We chose the mesh (n;mn;)
according to Fig. 3 for such simulation.
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Fig. 3 Computational grid for P, = 1 bar

The Euler equations in a flux-vector formulation in Cartesian
coordinate system are given as [8]-[10].
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where W, E, F and G are vectors given by:
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The energy per unit of mass e is defined as sum of internal
energy and kinetic energy such as:

e=c,,T+%(u2+v2+W2) ®)

1II. AXISYMMETRIC FORMULATION

To pass from 3D to 2D axisymmetric problem, we are forced
to make changes to a point (x, y, z) to the point (x, ) since the
parameters do not change depending on the rotation for a fixed
position on the axis of symmetry. The results obtained have
shown that the flow is axisymmetric. The system of (4) can be
written as [3]:

mes(Coy) 2 + Saeluntyy)(Fisl + Giyf) .a — H.aire(C,;) =0 (6)

where mes(Ci, j) is the measurement (in m3) of an infinitely

small volume of center (i,j), aire(Ci‘ j) is the surface of the
symmetry plane passing by the center of elementary volume
and 7, is the integrated normal. The third term of the equation
expresses the axisymmetric flow condition. The new Fluxes
W,F,G and H becomes [3]:

p
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Ps (pe +p)u (pe +p)v 0
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IV. DISCRETIZATION IN TIME

The explicit method was used as an approach in time and
space. The time step At is calculated by:

Atl“j = min (Ax.CFL)

Vii+a

%

CFL is a stability factor, V is the velocity of the flow,a the
speed of sound and Ax is the small length of the mesh at the
same point (i, j). At each time step and for each point(i, j), the
system of (6) can be written as [5], [11]:

At :
Wit =W - ——— Z (F,;" T+ Gy ;")) +
mes(Ci,]-) ety
At aire(C; ;) yon (8)

Y mes(ci,) 1

The choice of the grid and CFL plays an important role to
obtain the stationary solution [2].

V.DECOMPOSITION OF VAN-LEER

The use of the decomposition of Van Leer is necessary in
supersonic flow [4], [12]. We decompose the flux f into two
parts f;; and fi; such that f = f;; + f;. This decomposition
is applied through an interface between two nodes. In 2D, we
project speeds in the new marker containing the normal to the
facet in broken line forming an angle 8 compared to the axis of
symmetry, rotation R, Fig. 4 [5].
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Fig. 4 Interface

The Euler new vector WF is written in the new reference
mark as:

p
Wi = <p7> ©
pe

where 7,{ is obtained from 17, via the rotation R, in the following
way:

V=) == () = Conp coso) () (10
where
c059=”1%—"”, sin€=|:‘1,—"|| (11)
Il = [nZ +n} (12)
The overall transformation R is written overall:
=(%ine coso) (13)
= (g ) 04
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Moreover, at each interface i + 1/2, two neighbor states i
and [ + 1 are known, Fig. 4. Thus, we can calculate the one-
dimensional flow F through the interface, total flow f(W,n)
being deduced from F by applying the opposite rotation, as:

fw,m = llill. R (F(WF)) (15)

According to Fig. 4, we project the velocities (u, v) on the
normal of the facet and we use the component u,, to calculate
the flow rate through this facet. One more here will help us to
separate the supersonic flow of supersonic flow in order to use
the Vann-Leer decomposition. After calculating the flow in the
reference of the normal 7} , we return to the mark (x, ) via the
reverse rotation to determine all parameters of flow. The
expression of Van-Leer decomposition is as:

F(WR) M, =1
2
[l =n
e )G = Duy +2a] |
FRaws =+ M,] <1 (16)
fl 'Un
+ _ 2
|\l
0 M, <-1
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pa (un -
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fi
Ly - Du, - 2d]
FpwRy =<1 v o IM,| <1 (17)
fl -vn
- 2
% ((Y—ly)zu_nl-za) +Vr%]
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where M,, = u,/a, u, and v, are the normal and tangential
velocities to the 7] respectively.

VI. BOUNDARY CONDITIONS

In unsteady problems, the initial values of all flow variables
need to be specified at all points in the computational domain.
The present work describes the implementation of the following
most common boundary conditions in the discredited equations
of the finite volume method: inlet, outlet, wall and symmetry

[5], [6].
A. Inlet

At the nozzle inlet the pressure and temperature are fixed, but
the law rate of the flow, M=0.019, obligate us to leave floating
one of flow parameters. Here, one chooses to extrapolate the
module of velocity from the interior of the solution domain.
This correction allows an adjustment of the flow rate.

B. Body Surface

In this case, as flow is not viscous, a slip condition is applied
on the wall. At any point on the wall the following condition
must be checked:

=l
=1
Il
o

(18)

7 is the normal to the wall.

C. Axis of Symmetry

The conditions at axis of symmetry boundary are no flow and
no scalar flux across the axis.

D.Outlet

At the exit of the computational domain, the pressure is fixed,
the values of others flow parameters are extrapolated from the
interior values. Three grids were tested for the nozzle,

(256x30), (341x40) and (426x50). For the downstream
reservoir the grid is (5n;, 2n;). From the last mesh, results are
unchanged and the residue is about 107°.

VII. RESULTS AND INTERPRETATIONS

Let's start with the numerical simulation with a downstream
pressure Pa = 1 bars (Fig. 5). The flow is supersonic at the
exit of the nozzle with the existence of an oblique shock wave
attached to the wall [7], and a normal shock at the center of
nozzle, called Mach disk. It is understood that in reality the
oblique shock is slightly advanced in the divergent because of
the turbulence. Floor nozzle is over expanded regime. The
presence of the right shock at the center of the flow is to cause
the pressure on the axis at the outlet of the nozzle is smaller than
the wall. More atmospheric pressure decreases during the rise
of the pitcher over the output shock waves will be less intense
until arriving at the event tailored to approximately 15 to
20 km altitude, and after this, the regime of the nozzle becomes
under expanded. Take the case that comes to 6 km altitude
where the atmospheric pressure is 0.5 bar, shock waves at the
exit of the nozzle is less intense (Fig. 6). In the case where the
atmospheric pressure is 0.08 bar, which corresponds to an
altitude of 17 km, the flow is without the presence of shock
waves and the nozzle is adapted regime (Fig. 7), the fluid
streams diverging near the wall as the output pressure is greater
than 0.08 bar and near the axis the flow converges because the
output pressure is lower than 0.08 bar. For more than 20 km
altitude, the jet at the outlet of the propelling nozzle is diverges,
Fig. 8 shows the case where the atmospheric pressure is
0.02bar. The grid of the reservoir is (5n;,3n;). Note that
while climbing the I, speed outside air over the vehicle does
not affect the flow behavior outside except with a little closer
to the axis of symmetry (Fig. 9).
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Fig. 5 Configuration for P, = 1 bar
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Fig. 6 Configuration for P, = 0.5 bar
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Fig. 9 Configuration for P, = 0.02 bar with exit flow

VIII.CONCLUSION

In conclusion, the flow at the outlet nozzles propellant is

done with the existence of oblique shock waves relating to the
wall and a normal shock at the center. This occurs only at the
beginning of the rise of the launcher. In most of the trip
operation is done without shock waves. The only way for the
moment, to get rid of this, is to increase the pressure in the
combustion chamber, this course requires stronger materials.
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